Padomin's picture
update model card README.md
e0e87f2
|
raw
history blame
3.1 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-7front-1body-7rear
    results: []

t5-base-TEDxJP-7front-1body-7rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4385
  • Wer: 0.1688
  • Mer: 0.1632
  • Wil: 0.2486
  • Wip: 0.7514
  • Hits: 55895
  • Substitutions: 6273
  • Deletions: 2419
  • Insertions: 2208
  • Cer: 0.1334

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.5657 1.0 1457 0.4744 0.2212 0.2056 0.2946 0.7054 55195 6783 2609 4892 0.1922
0.5388 2.0 2914 0.4193 0.1791 0.1724 0.2601 0.7399 55526 6485 2576 2507 0.1404
0.447 3.0 4371 0.4119 0.1728 0.1670 0.2531 0.7469 55690 6334 2563 2266 0.1341
0.3952 4.0 5828 0.4088 0.1704 0.1647 0.2503 0.7497 55802 6283 2502 2220 0.1330
0.3498 5.0 7285 0.4138 0.1701 0.1643 0.2500 0.7500 55881 6305 2401 2280 0.1321
0.3107 6.0 8742 0.4201 0.1693 0.1636 0.2497 0.7503 55888 6334 2365 2236 0.1319
0.3443 7.0 10199 0.4239 0.1694 0.1637 0.2495 0.7505 55890 6309 2388 2241 0.1328
0.3099 8.0 11656 0.4316 0.1695 0.1639 0.2496 0.7504 55833 6292 2462 2192 0.1337
0.2804 9.0 13113 0.4345 0.1687 0.1631 0.2486 0.7514 55896 6273 2418 2206 0.1332
0.2714 10.0 14570 0.4385 0.1688 0.1632 0.2486 0.7514 55895 6273 2419 2208 0.1334

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1