Padomin's picture
update model card README.md
24390d0
|
raw
history blame
3.1 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-7front-1body-7rear
    results: []

t5-base-TEDxJP-7front-1body-7rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4384
  • Wer: 0.1692
  • Mer: 0.1635
  • Wil: 0.2483
  • Wip: 0.7517
  • Hits: 55908
  • Substitutions: 6222
  • Deletions: 2457
  • Insertions: 2249
  • Cer: 0.1327

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 30
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.5881 1.0 1457 0.4572 0.2115 0.1995 0.2882 0.7118 54840 6661 3086 3916 0.1812
0.5018 2.0 2914 0.4167 0.1843 0.1765 0.2640 0.7360 55546 6494 2547 2863 0.1490
0.4633 3.0 4371 0.4110 0.1738 0.1679 0.2540 0.7460 55623 6327 2637 2260 0.1369
0.3971 4.0 5828 0.4068 0.1724 0.1666 0.2522 0.7478 55672 6278 2637 2218 0.1351
0.3907 5.0 7285 0.4131 0.1688 0.1635 0.2479 0.7521 55789 6180 2618 2106 0.1325
0.3305 6.0 8742 0.4147 0.1706 0.1649 0.2504 0.7496 55797 6281 2509 2227 0.1336
0.2937 7.0 10199 0.4236 0.1692 0.1636 0.2482 0.7518 55883 6207 2497 2223 0.1334
0.2649 8.0 11656 0.4307 0.1693 0.1638 0.2493 0.7507 55806 6272 2509 2154 0.1329
0.2914 9.0 13113 0.4319 0.1691 0.1634 0.2482 0.7518 55928 6230 2429 2262 0.1328
0.2598 10.0 14570 0.4384 0.1692 0.1635 0.2483 0.7517 55908 6222 2457 2249 0.1327

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1