Padomin's picture
update model card README.md
1c2b0aa
|
raw
history blame
3.1 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-6front-1body-6rear
    results: []

t5-base-TEDxJP-6front-1body-6rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4394
  • Wer: 0.1715
  • Mer: 0.1655
  • Wil: 0.2514
  • Wip: 0.7486
  • Hits: 55840
  • Substitutions: 6324
  • Deletions: 2423
  • Insertions: 2327
  • Cer: 0.1370

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 30
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.5934 1.0 1457 0.4618 0.2350 0.2167 0.3040 0.6960 54861 6643 3083 5449 0.2143
0.5143 2.0 2914 0.4200 0.1809 0.1738 0.2621 0.7379 55519 6548 2520 2613 0.1457
0.4671 3.0 4371 0.4138 0.1726 0.1669 0.2535 0.7465 55651 6368 2568 2212 0.1349
0.4044 4.0 5828 0.4077 0.1708 0.1653 0.2518 0.7482 55708 6359 2520 2155 0.1371
0.398 5.0 7285 0.4140 0.1691 0.1638 0.2496 0.7504 55749 6294 2544 2083 0.1329
0.3394 6.0 8742 0.4190 0.1701 0.1645 0.2511 0.7489 55822 6375 2390 2224 0.1348
0.3009 7.0 10199 0.4264 0.1720 0.1659 0.2519 0.7481 55861 6341 2385 2381 0.1369
0.273 8.0 11656 0.4307 0.1703 0.1647 0.2509 0.7491 55772 6337 2478 2184 0.1352
0.2939 9.0 13113 0.4350 0.1697 0.1640 0.2499 0.7501 55843 6313 2431 2214 0.1353
0.2747 10.0 14570 0.4394 0.1715 0.1655 0.2514 0.7486 55840 6324 2423 2327 0.1370

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1