metadata
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-6front-1body-6rear
results: []
t5-base-TEDxJP-6front-1body-6rear
This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:
- Loss: 0.4394
- Wer: 0.1715
- Mer: 0.1655
- Wil: 0.2514
- Wip: 0.7486
- Hits: 55840
- Substitutions: 6324
- Deletions: 2423
- Insertions: 2327
- Cer: 0.1370
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 30
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5934 | 1.0 | 1457 | 0.4618 | 0.2350 | 0.2167 | 0.3040 | 0.6960 | 54861 | 6643 | 3083 | 5449 | 0.2143 |
0.5143 | 2.0 | 2914 | 0.4200 | 0.1809 | 0.1738 | 0.2621 | 0.7379 | 55519 | 6548 | 2520 | 2613 | 0.1457 |
0.4671 | 3.0 | 4371 | 0.4138 | 0.1726 | 0.1669 | 0.2535 | 0.7465 | 55651 | 6368 | 2568 | 2212 | 0.1349 |
0.4044 | 4.0 | 5828 | 0.4077 | 0.1708 | 0.1653 | 0.2518 | 0.7482 | 55708 | 6359 | 2520 | 2155 | 0.1371 |
0.398 | 5.0 | 7285 | 0.4140 | 0.1691 | 0.1638 | 0.2496 | 0.7504 | 55749 | 6294 | 2544 | 2083 | 0.1329 |
0.3394 | 6.0 | 8742 | 0.4190 | 0.1701 | 0.1645 | 0.2511 | 0.7489 | 55822 | 6375 | 2390 | 2224 | 0.1348 |
0.3009 | 7.0 | 10199 | 0.4264 | 0.1720 | 0.1659 | 0.2519 | 0.7481 | 55861 | 6341 | 2385 | 2381 | 0.1369 |
0.273 | 8.0 | 11656 | 0.4307 | 0.1703 | 0.1647 | 0.2509 | 0.7491 | 55772 | 6337 | 2478 | 2184 | 0.1352 |
0.2939 | 9.0 | 13113 | 0.4350 | 0.1697 | 0.1640 | 0.2499 | 0.7501 | 55843 | 6313 | 2431 | 2214 | 0.1353 |
0.2747 | 10.0 | 14570 | 0.4394 | 0.1715 | 0.1655 | 0.2514 | 0.7486 | 55840 | 6324 | 2423 | 2327 | 0.1370 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1