t5-base-TEDxJP-5front-1body-5rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4383
  • Wer: 0.1697
  • Mer: 0.1641
  • Wil: 0.2500
  • Wip: 0.7500
  • Hits: 55852
  • Substitutions: 6314
  • Deletions: 2421
  • Insertions: 2228
  • Cer: 0.1328

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.6185 1.0 1457 0.4683 0.1948 0.1863 0.2758 0.7242 54959 6658 2970 2956 0.1682
0.5149 2.0 2914 0.4280 0.1773 0.1713 0.2591 0.7409 55376 6468 2743 2238 0.1426
0.4705 3.0 4371 0.4173 0.1743 0.1682 0.2552 0.7448 55680 6418 2489 2351 0.1387
0.4023 4.0 5828 0.4114 0.1713 0.1656 0.2515 0.7485 55751 6313 2523 2230 0.1335
0.3497 5.0 7285 0.4162 0.1722 0.1662 0.2522 0.7478 55787 6331 2469 2323 0.1365
0.3246 6.0 8742 0.4211 0.1714 0.1655 0.2513 0.7487 55802 6310 2475 2284 0.1367
0.3492 7.0 10199 0.4282 0.1711 0.1652 0.2514 0.7486 55861 6350 2376 2325 0.1341
0.2788 8.0 11656 0.4322 0.1698 0.1641 0.2502 0.7498 55883 6342 2362 2265 0.1327
0.2801 9.0 13113 0.4362 0.1710 0.1652 0.2514 0.7486 55828 6351 2408 2288 0.1352
0.2773 10.0 14570 0.4383 0.1697 0.1641 0.2500 0.7500 55852 6314 2421 2228 0.1328

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.