metadata
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-10front-1body-10rear
results: []
t5-base-TEDxJP-10front-1body-10rear
This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:
- Loss: 0.4366
- Wer: 0.1686
- Mer: 0.1630
- Wil: 0.2490
- Wip: 0.7510
- Hits: 55913
- Substitutions: 6325
- Deletions: 2349
- Insertions: 2213
- Cer: 0.1324
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 30
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5904 | 1.0 | 1457 | 0.4553 | 0.2049 | 0.1941 | 0.2824 | 0.7176 | 54935 | 6595 | 3057 | 3580 | 0.1816 |
0.5001 | 2.0 | 2914 | 0.4201 | 0.1858 | 0.1776 | 0.2657 | 0.7343 | 55561 | 6554 | 2472 | 2973 | 0.1501 |
0.4615 | 3.0 | 4371 | 0.4099 | 0.1748 | 0.1685 | 0.2544 | 0.7456 | 55706 | 6326 | 2555 | 2410 | 0.1414 |
0.3988 | 4.0 | 5828 | 0.4040 | 0.1710 | 0.1654 | 0.2514 | 0.7486 | 55734 | 6319 | 2534 | 2189 | 0.1346 |
0.3859 | 5.0 | 7285 | 0.4131 | 0.1689 | 0.1635 | 0.2487 | 0.7513 | 55808 | 6245 | 2534 | 2129 | 0.1327 |
0.3259 | 6.0 | 8742 | 0.4138 | 0.1695 | 0.1639 | 0.2508 | 0.7492 | 55837 | 6400 | 2350 | 2198 | 0.1325 |
0.2915 | 7.0 | 10199 | 0.4233 | 0.1696 | 0.1637 | 0.2499 | 0.7501 | 55932 | 6344 | 2311 | 2297 | 0.1329 |
0.2638 | 8.0 | 11656 | 0.4298 | 0.1689 | 0.1633 | 0.2492 | 0.7508 | 55892 | 6319 | 2376 | 2213 | 0.1325 |
0.2888 | 9.0 | 13113 | 0.4321 | 0.1686 | 0.1630 | 0.2492 | 0.7508 | 55909 | 6343 | 2335 | 2210 | 0.1319 |
0.2614 | 10.0 | 14570 | 0.4366 | 0.1686 | 0.1630 | 0.2490 | 0.7510 | 55913 | 6325 | 2349 | 2213 | 0.1324 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1