Padomin's picture
update model card README.md
973a86d
|
raw
history blame
3.11 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-10front-1body-10rear
    results: []

t5-base-TEDxJP-10front-1body-10rear

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4366
  • Wer: 0.1686
  • Mer: 0.1630
  • Wil: 0.2490
  • Wip: 0.7510
  • Hits: 55913
  • Substitutions: 6325
  • Deletions: 2349
  • Insertions: 2213
  • Cer: 0.1324

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 30
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.5904 1.0 1457 0.4553 0.2049 0.1941 0.2824 0.7176 54935 6595 3057 3580 0.1816
0.5001 2.0 2914 0.4201 0.1858 0.1776 0.2657 0.7343 55561 6554 2472 2973 0.1501
0.4615 3.0 4371 0.4099 0.1748 0.1685 0.2544 0.7456 55706 6326 2555 2410 0.1414
0.3988 4.0 5828 0.4040 0.1710 0.1654 0.2514 0.7486 55734 6319 2534 2189 0.1346
0.3859 5.0 7285 0.4131 0.1689 0.1635 0.2487 0.7513 55808 6245 2534 2129 0.1327
0.3259 6.0 8742 0.4138 0.1695 0.1639 0.2508 0.7492 55837 6400 2350 2198 0.1325
0.2915 7.0 10199 0.4233 0.1696 0.1637 0.2499 0.7501 55932 6344 2311 2297 0.1329
0.2638 8.0 11656 0.4298 0.1689 0.1633 0.2492 0.7508 55892 6319 2376 2213 0.1325
0.2888 9.0 13113 0.4321 0.1686 0.1630 0.2492 0.7508 55909 6343 2335 2210 0.1319
0.2614 10.0 14570 0.4366 0.1686 0.1630 0.2490 0.7510 55913 6325 2349 2213 0.1324

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1