t5-base-TEDxJP-0front-1body-5rear-order-RB

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4744
  • Wer: 0.1790
  • Mer: 0.1727
  • Wil: 0.2610
  • Wip: 0.7390
  • Hits: 55379
  • Substitutions: 6518
  • Deletions: 2690
  • Insertions: 2353
  • Cer: 0.1409

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 40
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.6463 1.0 1457 0.4971 0.2539 0.2313 0.3198 0.6802 54480 6786 3321 6290 0.2360
0.5488 2.0 2914 0.4629 0.1840 0.1776 0.2664 0.7336 55044 6557 2986 2342 0.1488
0.553 3.0 4371 0.4522 0.1792 0.1734 0.2615 0.7385 55160 6487 2940 2145 0.1421
0.4962 4.0 5828 0.4488 0.1801 0.1737 0.2615 0.7385 55350 6484 2753 2395 0.1424
0.4629 5.0 7285 0.4534 0.1794 0.1732 0.2617 0.7383 55330 6540 2717 2330 0.1407
0.3637 6.0 8742 0.4577 0.1797 0.1732 0.2614 0.7386 55402 6516 2669 2421 0.1412
0.3499 7.0 10199 0.4645 0.1780 0.1719 0.2598 0.7402 55411 6486 2690 2323 0.1393
0.3261 8.0 11656 0.4660 0.1785 0.1722 0.2604 0.7396 55416 6512 2659 2358 0.1400
0.3089 9.0 13113 0.4719 0.1790 0.1727 0.2613 0.7387 55371 6549 2667 2342 0.1407
0.3024 10.0 14570 0.4744 0.1790 0.1727 0.2610 0.7390 55379 6518 2690 2353 0.1409

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.