Padomin's picture
update model card README.md
b562670
|
raw
history blame
3.12 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-0front-1body-10rear-order-RB
    results: []

t5-base-TEDxJP-0front-1body-10rear-order-RB

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4705
  • Wer: 0.1772
  • Mer: 0.1711
  • Wil: 0.2598
  • Wip: 0.7402
  • Hits: 55441
  • Substitutions: 6558
  • Deletions: 2588
  • Insertions: 2296
  • Cer: 0.1388

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.6067 1.0 1457 0.4967 0.2034 0.1934 0.2844 0.7156 54800 6821 2966 3351 0.1679
0.579 2.0 2914 0.4534 0.1882 0.1805 0.2697 0.7303 55162 6619 2806 2728 0.1546
0.4934 3.0 4371 0.4463 0.1768 0.1710 0.2592 0.7408 55362 6496 2729 2197 0.1396
0.4371 4.0 5828 0.4444 0.1766 0.1707 0.2580 0.7420 55381 6417 2789 2197 0.1387
0.3917 5.0 7285 0.4450 0.1771 0.1711 0.2595 0.7405 55415 6520 2652 2269 0.1389
0.3614 6.0 8742 0.4516 0.1775 0.1714 0.2592 0.7408 55443 6481 2663 2323 0.1379
0.375 7.0 10199 0.4568 0.1777 0.1715 0.2593 0.7407 55418 6475 2694 2306 0.1396
0.3615 8.0 11656 0.4622 0.1764 0.1706 0.2585 0.7415 55380 6472 2735 2188 0.1382
0.3129 9.0 13113 0.4678 0.1770 0.1709 0.2592 0.7408 55474 6524 2589 2318 0.1385
0.3082 10.0 14570 0.4705 0.1772 0.1711 0.2598 0.7402 55441 6558 2588 2296 0.1388

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1