Padomin's picture
update model card README.md
0ab4d35
|
raw
history blame
3.12 kB
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - te_dx_jp
model-index:
  - name: t5-base-TEDxJP-0front-1body-10rear-order-RB
    results: []

t5-base-TEDxJP-0front-1body-10rear-order-RB

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4714
  • Wer: 0.1751
  • Mer: 0.1694
  • Wil: 0.2572
  • Wip: 0.7428
  • Hits: 55476
  • Substitutions: 6473
  • Deletions: 2638
  • Insertions: 2201
  • Cer: 0.1381

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 30
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.6116 1.0 1457 0.4923 0.2289 0.2127 0.3015 0.6985 54722 6733 3132 4917 0.1992
0.5362 2.0 2914 0.4506 0.1835 0.1770 0.2661 0.7339 55105 6590 2892 2369 0.1447
0.4869 3.0 4371 0.4459 0.1806 0.1742 0.2629 0.7371 55298 6556 2733 2374 0.1424
0.4642 4.0 5828 0.4413 0.1767 0.1710 0.2588 0.7412 55331 6462 2794 2157 0.1379
0.4395 5.0 7285 0.4462 0.1779 0.1719 0.2594 0.7406 55367 6451 2769 2270 0.1391
0.3831 6.0 8742 0.4493 0.1751 0.1696 0.2568 0.7432 55370 6409 2808 2092 0.1369
0.3446 7.0 10199 0.4563 0.1769 0.1710 0.2595 0.7405 55401 6535 2651 2238 0.1397
0.3031 8.0 11656 0.4657 0.1754 0.1697 0.2578 0.7422 55436 6492 2659 2179 0.1372
0.3406 9.0 13113 0.4677 0.1750 0.1692 0.2570 0.7430 55502 6474 2611 2219 0.1365
0.3067 10.0 14570 0.4714 0.1751 0.1694 0.2572 0.7428 55476 6473 2638 2201 0.1381

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1