File size: 3,124 Bytes
1b2d79f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ab4d35
 
 
 
 
 
 
 
 
 
1b2d79f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ab4d35
1b2d79f
 
 
 
 
 
 
 
 
0ab4d35
 
 
 
 
 
 
 
 
 
1b2d79f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-0front-1body-10rear-order-RB
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-base-TEDxJP-0front-1body-10rear-order-RB

This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4714
- Wer: 0.1751
- Mer: 0.1694
- Wil: 0.2572
- Wip: 0.7428
- Hits: 55476
- Substitutions: 6473
- Deletions: 2638
- Insertions: 2201
- Cer: 0.1381

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 30
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Mer    | Wil    | Wip    | Hits  | Substitutions | Deletions | Insertions | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:|
| 0.6116        | 1.0   | 1457  | 0.4923          | 0.2289 | 0.2127 | 0.3015 | 0.6985 | 54722 | 6733          | 3132      | 4917       | 0.1992 |
| 0.5362        | 2.0   | 2914  | 0.4506          | 0.1835 | 0.1770 | 0.2661 | 0.7339 | 55105 | 6590          | 2892      | 2369       | 0.1447 |
| 0.4869        | 3.0   | 4371  | 0.4459          | 0.1806 | 0.1742 | 0.2629 | 0.7371 | 55298 | 6556          | 2733      | 2374       | 0.1424 |
| 0.4642        | 4.0   | 5828  | 0.4413          | 0.1767 | 0.1710 | 0.2588 | 0.7412 | 55331 | 6462          | 2794      | 2157       | 0.1379 |
| 0.4395        | 5.0   | 7285  | 0.4462          | 0.1779 | 0.1719 | 0.2594 | 0.7406 | 55367 | 6451          | 2769      | 2270       | 0.1391 |
| 0.3831        | 6.0   | 8742  | 0.4493          | 0.1751 | 0.1696 | 0.2568 | 0.7432 | 55370 | 6409          | 2808      | 2092       | 0.1369 |
| 0.3446        | 7.0   | 10199 | 0.4563          | 0.1769 | 0.1710 | 0.2595 | 0.7405 | 55401 | 6535          | 2651      | 2238       | 0.1397 |
| 0.3031        | 8.0   | 11656 | 0.4657          | 0.1754 | 0.1697 | 0.2578 | 0.7422 | 55436 | 6492          | 2659      | 2179       | 0.1372 |
| 0.3406        | 9.0   | 13113 | 0.4677          | 0.1750 | 0.1692 | 0.2570 | 0.7430 | 55502 | 6474          | 2611      | 2219       | 0.1365 |
| 0.3067        | 10.0  | 14570 | 0.4714          | 0.1751 | 0.1694 | 0.2572 | 0.7428 | 55476 | 6473          | 2638      | 2201       | 0.1381 |


### Framework versions

- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1