distilbert-base-multilingual-cased-multilabel-indonesian-hate-speech-modified-v3
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2270
- F1: 0.7643
- Roc Auc: 0.8500
- Accuracy: 0.6750
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.3092 | 1.0 | 1317 | 0.2511 | 0.6726 | 0.7797 | 0.5831 |
0.2156 | 2.0 | 2634 | 0.2253 | 0.7351 | 0.8389 | 0.6052 |
0.1699 | 3.0 | 3951 | 0.2189 | 0.7529 | 0.8461 | 0.6530 |
0.1261 | 4.0 | 5268 | 0.2301 | 0.7581 | 0.8384 | 0.6720 |
0.0996 | 5.0 | 6585 | 0.2270 | 0.7643 | 0.8500 | 0.6750 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support