Granite-3.1-Earthen-v0.3-1B-A400M-GGUF
ibm-granite/granite-3.1-1b-a400m-instruct
was trained at 8K with batch size 4 gradient accumulation 4, so each step was 131,072 tokens (including any padding tokens). It was trained for 560 steps, adding up to a total of 73,400,320 unique tokens seen.
This is a small test run. A larger version is planned.
Quants
Prompt Format
This model uses Granite-3.1 Instruct format.
<|start_of_role|>system<|end_of_role|>example system prompt<|end_of_text|>
<|start_of_role|>user<|end_of_role|>example user turn 1<|end_of_text|>
<|start_of_role|>assistant<|end_of_role|>example assistant turn 1<|end_of_text|>
<|start_of_role|>user<|end_of_role|>example user turn 2<|end_of_text|>
<|start_of_role|>assistant<|end_of_role|>example assistant turn 2<|end_of_text|>
Training Details
# Requirements before running
# - Get latest commit of axolotl (currently c0a0c75)
# - Download these to axolotl/src/axolotl/prompt_formatters
# - https://github.com/xzuyn/axolotl/blob/came-plus-formatters/src/axolotl/prompt_strategies/formatter_regex.py
# - https://github.com/xzuyn/axolotl/blob/came-plus-formatters/src/axolotl/prompt_strategies/customcompletion-regex.py
# - https://github.com/xzuyn/axolotl/blob/came-plus-formatters/src/axolotl/prompt_strategies/customgranite-regex.py
# - pip install ftfy
# - pip install git+https://github.com/xzuyn/CAME.git@sr-grams-cautious-8bit
# Weights and Biases logging config
wandb_project: Granite-3.1-1B-A400M
wandb_name: Granite-3.1-Earthen-v0.3-1B-A400M-QLoRA-run1
# Model checkpointing config
output_dir: ./Outputs/Granite-3.1-Earthen-v0.3-1B-A400M-QLoRA-run1
resume_from_checkpoint:
save_steps: 10
save_safetensors: true
save_total_limit: 2
save_only_model: false
# Model architecture config
base_model: ibm-granite/granite-3.1-1b-a400m-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# Mixed precision training config
bf16: true
fp16: false
tf32: false
# Model loading config
load_in_8bit: false
load_in_4bit: true
strict: false
# Sequence config
sequence_len: 8192
min_sample_len: 256
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
train_on_inputs: false
group_by_length: false
# LoRA adapter config
adapter: qlora
lora_r: 128
lora_alpha: 128
lora_dropout: 0.125
lora_target_linear: true
embeddings_skip_upcast: true
# Dataset config
datasets:
# Completion
# Story-like Data
- path: BeaverAI/REDACTED1
split: train[:4000]
type: customcompletion-regex
- path: PJMixers-Dev/Lit-axo-Shuffled
split: train[:4000]
type: customcompletion-regex
- path: PJMixers-Dev/Mielikki_Erebus-87k-axo
split: train[:4000]
type: customcompletion-regex
- path: PJMixers/RyokoAI_Honeyfeed3600-Cleanish
split: train[:4000]
type: customcompletion-regex
- path: BeaverAI/REDACTED2
type: customcompletion-regex
- path: PJMixers-Dev/allura-org_fujin-cleaned-stage-2-axo
split: train[:4000]
type: customcompletion-regex
- path: Nelathan/synthetic-sugar-quill
split: train[:4000]
type: customcompletion-regex
- path: PJMixers-Dev/winglian_visual-novels-json-axo-dropped-long
split: train[:4000]
type: customcompletion-regex
- path: BeaverAI/REDACTED3
type: customcompletion-regex
- path: PJMixers-Dev/recursal_SCP-RECURSAL-Cleaned
split: train[:4000]
type: customcompletion-regex
# Subtitle Data
- path: PJMixers-Dev/Subtitles
type: customcompletion-regex
- path: PJMixers-Dev/KaraKaraWitch_AnimeSubtitle-axo
split: train[:4000]
type: customcompletion-regex
# News Data
- path: PJMixers/AP-News-2024
type: customcompletion-regex
- path: PJMixers-Dev/Fundus-AP-News-Formatted
split: train[:4000]
type: customcompletion-regex
- path: PJMixers-Dev/Fundus-AP-News-2-Formatted
type: customcompletion-regex
# Misc Data
- path: PJMixers-Dev/goodwiki-2024-12-04-axo
split: train[:4000]
type: customcompletion-regex
- path: epfl-llm/guidelines
split: train[:4000]
field: clean_text
type: customcompletion-regex
# Granite-3.1 Instruct
# Instruction Data
- path: PJMixers-Dev/allenai_tulu-3-sft-mixture-filtered-2-ShareGPT
split: train[:4000]
type: customgranite-regex
- path: OpenLeecher/lmsys_chat_1m_clean
split: train[:4000]
type: customgranite-regex
# RP Data
- path: PJMixers-Dev/Gryphe-Aesir-RPG-Charcards-Opus-Mixed
type: customgranite-regex
- path: allura-org/gryphe-sonnet-3.5-charcards-names-added
type: customgranite-regex
- path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.3
type: customgranite-regex
- path: BeaverAI/REDACTED4
type: customgranite-regex
- path: PJMixers-Dev/MinervaAI_Aesir-Preview-Anon
type: customgranite-regex
- path: PJMixers-Dev/lemonilia_LimaRP-Simple-CustomShareGPT-Shuffled
type: customgranite-regex
- path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
type: customgranite-regex
- path: PJMixers-Dev/NyxKrage_chub-logs-sharegpt-longest-CustomShareGPT
type: customgranite-regex
- path: PJMixers/OpenLeecher_Teatime_all_logs_longest-ShareGPT
type: customgranite-regex
- path: grimulkan/aicg-logs-augmented
type: customgranite-regex
- path: grimulkan/PIPPA-augmented-dedup
type: customgranite-regex
- path: PJMixers/grimulkan_bluemoon_Karen_cleaned-carded-formatted
type: customgranite-regex
# InstStory Data
- path: PJMixers/lodrick-the-lafted_OpusStories-ShareGPT
type: customgranite-regex
- path: Gryphe/ChatGPT-4o-Writing-Prompts
type: customgranite-regex
- path: Gryphe/Opus-WritingPrompts
type: customgranite-regex
- path: anthracite-org/nopm_claude_writing_fixed
type: customgranite-regex
- path: PJMixers-Dev/Tiefighter-13B-Fake-Distill-ShareGPT
type: customgranite-regex
- path: allura-org/fujin-instruct-v2
type: customgranite-regex
- path: ToastyPigeon/gutenberg-sft
type: customgranite-regex
# Adventure Data
- path: PocketDoc/Dans-Prosemaxx-Adventure
type: customgranite-regex
- path: PocketDoc/Dans-Failuremaxx-Adventure-3
type: customgranite-regex
# Decensoring Data
- path: TheDrummer/AmoralQA-v2
type: customgranite-regex
- path: BeaverAI/REDACTED5
type: customgranite-regex
- path: BeaverAI/REDACTED6
type: customgranite-regex
val_set_size: 256
eval_strategy: steps
eval_steps: 10
dataset_prepared_path: ./00-Tokenized-Datasets/Granite-3.1-Earthen-v0.3-1B-A400M-LoRA-seed42
shuffle_merged_datasets: true
# Training hyperparameters
num_epochs: 1
gradient_accumulation_steps: 4
micro_batch_size: 4
eval_batch_size: 4
warmup_steps: 0
optimizer: came_pytorch
optim_args:
enable_stochastic_rounding: true
enable_cautious: true
enable_8bit: true
lr_scheduler: rex
learning_rate: 2.5e-7
cosine_min_lr_ratio: 0.05
weight_decay: 0.01
max_grad_norm: 0.5
logging_steps: 1
# Model optimization
gradient_checkpointing: offload
sdp_attention: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_cross_entropy: true
lora_mlp_kernel: false
lora_qkv_kernel: false
lora_o_kernel: false
# Debug config
debug: true
seed: 42
# Token config
special_tokens:
bos_token: "<|end_of_text|>"
eos_token: "<|end_of_text|>"
pad_token: "<|end_of_text|>"
tokens:
Citations
Show Citations
@misc{wolf2020huggingfacestransformersstateoftheartnatural,
title={HuggingFace's Transformers: State-of-the-art Natural Language Processing},
author={Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush},
year={2020},
eprint={1910.03771},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/1910.03771},
}
@misc{hu2021loralowrankadaptationlarge,
title={LoRA: Low-Rank Adaptation of Large Language Models},
author={Edward J. Hu and Yelong Shen and Phillip Wallis and Zeyuan Allen-Zhu and Yuanzhi Li and Shean Wang and Lu Wang and Weizhu Chen},
year={2021},
eprint={2106.09685},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2106.09685},
}
@misc{dettmers2023qloraefficientfinetuningquantized,
title={QLoRA: Efficient Finetuning of Quantized LLMs},
author={Tim Dettmers and Artidoro Pagnoni and Ari Holtzman and Luke Zettlemoyer},
year={2023},
eprint={2305.14314},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2305.14314},
}
@misc{dao2023flashattention2fasterattentionbetter,
title={FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning},
author={Tri Dao},
year={2023},
eprint={2307.08691},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2307.08691},
}
@misc{hsu2024ligerkernelefficienttriton,
title={Liger Kernel: Efficient Triton Kernels for LLM Training},
author={Pin-Lun Hsu and Yun Dai and Vignesh Kothapalli and Qingquan Song and Shao Tang and Siyu Zhu and Steven Shimizu and Shivam Sahni and Haowen Ning and Yanning Chen},
year={2024},
eprint={2410.10989},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2410.10989},
}
@misc{chen2021rexrevisitingbudgetedtraining,
title={REX: Revisiting Budgeted Training with an Improved Schedule},
author={John Chen and Cameron Wolfe and Anastasios Kyrillidis},
year={2021},
eprint={2107.04197},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2107.04197},
}
@misc{luo2023cameconfidenceguidedadaptivememory,
title={CAME: Confidence-guided Adaptive Memory Efficient Optimization},
author={Yang Luo and Xiaozhe Ren and Zangwei Zheng and Zhuo Jiang and Xin Jiang and Yang You},
year={2023},
eprint={2307.02047},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2307.02047},
}
@misc{zamirai2021revisitingbfloat16training,
title={Revisiting BFloat16 Training},
author={Pedram Zamirai and Jian Zhang and Christopher R. Aberger and Christopher De Sa},
year={2021},
eprint={2010.06192},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2010.06192},
}
@misc{liang2025cautiousoptimizersimprovingtraining,
title={Cautious Optimizers: Improving Training with One Line of Code},
author={Kaizhao Liang and Lizhang Chen and Bo Liu and Qiang Liu},
year={2025},
eprint={2411.16085},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2411.16085},
}
@misc{xie2025sana15efficientscaling,
title={SANA 1.5: Efficient Scaling of Training-Time and Inference-Time Compute in Linear Diffusion Transformer},
author={Enze Xie and Junsong Chen and Yuyang Zhao and Jincheng Yu and Ligeng Zhu and Chengyue Wu and Yujun Lin and Zhekai Zhang and Muyang Li and Junyu Chen and Han Cai and Bingchen Liu and Daquan Zhou and Song Han},
year={2025},
eprint={2501.18427},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2501.18427},
}
@misc{dallabetta2024fundussimpletousenewsscraper,
title={Fundus: A Simple-to-Use News Scraper Optimized for High Quality Extractions},
author={Max Dallabetta and Conrad Dobberstein and Adrian Breiding and Alan Akbik},
year={2024},
eprint={2403.15279},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2403.15279},
}
@misc{lambert2025tulu3pushingfrontiers,
title={Tulu 3: Pushing Frontiers in Open Language Model Post-Training},
author={Nathan Lambert and Jacob Morrison and Valentina Pyatkin and Shengyi Huang and Hamish Ivison and Faeze Brahman and Lester James V. Miranda and Alisa Liu and Nouha Dziri and Shane Lyu and Yuling Gu and Saumya Malik and Victoria Graf and Jena D. Hwang and Jiangjiang Yang and Ronan Le Bras and Oyvind Tafjord and Chris Wilhelm and Luca Soldaini and Noah A. Smith and Yizhong Wang and Pradeep Dasigi and Hannaneh Hajishirzi},
year={2025},
eprint={2411.15124},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.15124},
}
@misc{zheng2024lmsyschat1mlargescalerealworldllm,
title={LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset},
author={Lianmin Zheng and Wei-Lin Chiang and Ying Sheng and Tianle Li and Siyuan Zhuang and Zhanghao Wu and Yonghao Zhuang and Zhuohan Li and Zi Lin and Eric P. Xing and Joseph E. Gonzalez and Ion Stoica and Hao Zhang},
year={2024},
eprint={2309.11998},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2309.11998},
}
@misc{gosling2023pippapartiallysyntheticconversational,
title={PIPPA: A Partially Synthetic Conversational Dataset},
author={Tear Gosling and Alpin Dale and Yinhe Zheng},
year={2023},
eprint={2308.05884},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2308.05884},
}
- Downloads last month
- 225
Hardware compatibility
Log In
to view the estimation
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit
16-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for PJMixers-Dev/Granite-3.1-Earthen-v0.3-1B-A400M-GGUF
Base model
ibm-granite/granite-3.1-1b-a400m-base