OwLim's picture
finetune on Sundanese SLR44
87cd235 verified
metadata
library_name: transformers
language:
  - sun
license: apache-2.0
base_model: OwLim/whisper-java-SLR41-SLR35
tags:
  - generated_from_trainer
datasets:
  - SLR44_Augmented
metrics:
  - wer
model-index:
  - name: Whisper Small Sundanese Java
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: SLR44 Augmented Sundanese
          type: SLR44_Augmented
          args: 'split: train/test'
        metrics:
          - name: Wer
            type: wer
            value: 11.350884764782046

Whisper Small Sundanese Java

This model is a fine-tuned version of OwLim/whisper-java-SLR41-SLR35 on the SLR44 Augmented Sundanese dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1298
  • Wer: 11.3509

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5919 0.4292 100 0.2815 23.4139
0.395 0.8584 200 0.1782 15.8826
0.1788 1.2876 300 0.1554 13.0773
0.1654 1.7167 400 0.1445 11.4372
0.0581 2.1459 500 0.1337 11.5667
0.0572 2.5751 600 0.1335 11.6746
0.057 3.0043 700 0.1304 11.1135
0.0241 3.4335 800 0.1317 11.1135
0.0217 3.8627 900 0.1297 11.5019
0.0147 4.2918 1000 0.1298 11.3509

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1