Whisper Small Sundanese

This model is a fine-tuned version of openai/whisper-small on the SLR44 Augmented Sundanese dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1282
  • Wer: 13.0988

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6373 0.4292 100 0.3069 25.1403
0.4107 0.8584 200 0.1883 17.6953
0.1919 1.2876 300 0.1628 15.6884
0.1769 1.7167 400 0.1486 14.1562
0.0698 2.1459 500 0.1371 14.2641
0.0599 2.5751 600 0.1334 13.6167
0.0604 3.0043 700 0.1288 13.5304
0.0259 3.4335 800 0.1300 13.1636
0.025 3.8627 900 0.1280 13.1420
0.0169 4.2918 1000 0.1282 13.0988

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
265
Safetensors
Model size
242M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for OwLim/whisper-sundanese-finetune

Finetuned
(2617)
this model

Space using OwLim/whisper-sundanese-finetune 1

Evaluation results