whisper-java-SLR41 / README.md
OwLim's picture
End of training
b5a41ad verified
metadata
library_name: transformers
language:
  - jav
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - SLR41
metrics:
  - wer
model-index:
  - name: Whisper Small Java
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: SLR Javanenese
          type: SLR41
          args: 'config: java, split: train, test'
        metrics:
          - name: Wer
            type: wer
            value: 26.77317840716534

Whisper Small Java

This model is a fine-tuned version of openai/whisper-small on the SLR Javanenese dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2729
  • Wer: 26.7732

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.8934 0.3003 100 0.8003 52.4086
0.4852 0.6006 200 0.5305 39.4578
0.4111 0.9009 300 0.4214 32.8250
0.2101 1.2012 400 0.3655 30.4527
0.1803 1.5015 500 0.3257 29.1939
0.1845 1.8018 600 0.3072 27.4752
0.0899 2.1021 700 0.2997 26.4585
0.0816 2.4024 800 0.2850 26.3617
0.078 2.7027 900 0.2755 26.7248
0.0769 3.0030 1000 0.2729 26.7732

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1