Commit
·
6b62c0a
1
Parent(s):
2849157
Initial
Browse files- OverFitted-MlpPolicy-test.zip +2 -2
- OverFitted-MlpPolicy-test/data +23 -23
- OverFitted-MlpPolicy-test/policy.optimizer.pth +1 -1
- OverFitted-MlpPolicy-test/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
OverFitted-MlpPolicy-test.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cec78722afa078ceaa06512b6b4a9fcb2abfbc65baa00b40822299a88af3fbd3
|
3 |
+
size 143982
|
OverFitted-MlpPolicy-test/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,24 +66,24 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
-
"gamma": 0.
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
-
"batch_size":
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f083954b440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f083954b4d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f083954b560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f083954b5f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f083954b680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f083954b710>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f083954b7a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f083954b830>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f083954b8c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f083954b950>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f083954b9e0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f083959c4b0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 3047424,
|
46 |
+
"_total_timesteps": 3000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652905247.9312313,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANNFLL5XOSs/ohQXveEbNr8Ex5i+dhsUPQAAAAAAAAAAZjbwvSlyZD0YY6o+3nJlvjB7qz1N5Vk+AAAAAAAAAADGhnQ+aYQAP7vUUb4PehG/DtK+Pocrgr4AAAAAAAAAADNB6L2IPRo/PrP9vdZYSL/igR2+2tGWvQAAAAAAAAAAzXptvAoRfTzl/U49Ao2jvnq7nTh2oZk9AAAAAAAAAAA68xo+6hMKPnrz4b6mbAy/WT0svVbUG74AAAAAAAAAAGaGOjqP1nu6mN89PMReErJ9m0M7btz6swAAgD8AAIA/GnwtveFEjrp70uQ87NyqvNM9SbtanZW9AAAAAAAAgD+aMVY9psmUP0UFXD5FEUa/Vo/XPb5x+j0AAAAAAAAAAGZQerxclym6JMsosy5vYqqdrue68u7KMwAAgD8AAIA/5tscvv5R3z3T++E+ice9vtqaDD5WG+s9AAAAAAAAAADzMnc+F7lYP1G6LD7Ftxa/KgXvPj2Kmj0AAAAAAAAAAHPYv724mIO7klH5PRQ0gD2i4IG8fFqiugAAgD8AAIA/QAJ8PiueGD+65Ns9OpAcvwJ94j5+kuO8AAAAAAAAAACabzS9pBIgu6tzMT4idTk9xRO0vLqRGD4AAIA/AACAP+aUkj0K0Uo8sM5lvtHHUL4O+zW9TfHbvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBWwHI3ZrckCUhpRSlIwBbJRLqIwBdJRHQLPQzqW1MM91fZQoaAZoCWgPQwjFGi5yD91wQJSGlFKUaBVLnGgWR0Cz0PXZK3/hdX2UKGgGaAloD0MI8+LEV/t9cUCUhpRSlGgVS59oFkdAs9D7vb48EHV9lChoBmgJaA9DCMxB0NGqGnNAlIaUUpRoFUujaBZHQLPQ/z67/XJ1fZQoaAZoCWgPQwiphv2emBpyQJSGlFKUaBVLvWgWR0Cz0RIpMHrydX2UKGgGaAloD0MIRKM7iF0IcECUhpRSlGgVS7JoFkdAs9EaSeRPoHV9lChoBmgJaA9DCHgpdcn4B3JAlIaUUpRoFUvIaBZHQLPRIF3pwCN1fZQoaAZoCWgPQwi1pKMczOByQJSGlFKUaBVLy2gWR0Cz0ShubZvldX2UKGgGaAloD0MIBD3UtqFXdECUhpRSlGgVS7VoFkdAs9E/P4VRDXV9lChoBmgJaA9DCEHvjSGAy29AlIaUUpRoFUuTaBZHQLPRVTs6aLJ1fZQoaAZoCWgPQwgDzefcbbxxQJSGlFKUaBVLmWgWR0Cz0VSwnpjddX2UKGgGaAloD0MIvMraprgOckCUhpRSlGgVS7hoFkdAs9FbxgAp8XV9lChoBmgJaA9DCPmh0ojZoXFAlIaUUpRoFUuYaBZHQLPRYXaJyhl1fZQoaAZoCWgPQwihhJm2f3NzQJSGlFKUaBVLt2gWR0Cz0XdxVAAydX2UKGgGaAloD0MI7ImuC39UckCUhpRSlGgVS8FoFkdAs9GPRQaaTnV9lChoBmgJaA9DCCVcyCO4B3BAlIaUUpRoFUu6aBZHQLPRj8xsVL11fZQoaAZoCWgPQwiZucDlMfFyQJSGlFKUaBVLl2gWR0Cz0ZpbdJrddX2UKGgGaAloD0MIwYwpWONYb0CUhpRSlGgVS5RoFkdAs9GdObiIcnV9lChoBmgJaA9DCCRkIM8uM3JAlIaUUpRoFUvBaBZHQLPRncgQpWp1fZQoaAZoCWgPQwidDflnxptxQJSGlFKUaBVLjmgWR0Cz0baYqoZRdX2UKGgGaAloD0MIC7PQzumkcECUhpRSlGgVS6JoFkdAs9HFOrQw9XV9lChoBmgJaA9DCKJESx7Pr3FAlIaUUpRoFUu9aBZHQLPRz/Firkt1fZQoaAZoCWgPQwh6w33kFkl0QJSGlFKUaBVLs2gWR0Cz0eXfMwDedX2UKGgGaAloD0MIzZVBtYGacUCUhpRSlGgVS5JoFkdAs9H6MfigkHV9lChoBmgJaA9DCEJeDyYFDHJAlIaUUpRoFUuHaBZHQLPR+vFWGRF1fZQoaAZoCWgPQwhwzojSHjlxQJSGlFKUaBVLymgWR0Cz0ghCQcPwdX2UKGgGaAloD0MI8YEd/4UeckCUhpRSlGgVS4NoFkdAs9IOYw7DEXV9lChoBmgJaA9DCKPIWkOpR3JAlIaUUpRoFUvIaBZHQLPSHbd8ArB1fZQoaAZoCWgPQwiis8wi1B1yQJSGlFKUaBVLtGgWR0Cz0h4OlO45dX2UKGgGaAloD0MI7N0f75VuckCUhpRSlGgVS4poFkdAs9IzNke6qnV9lChoBmgJaA9DCO2cZoE2oHFAlIaUUpRoFUuXaBZHQLPSNsCT2WZ1fZQoaAZoCWgPQwjOwp52uDFxQJSGlFKUaBVLkmgWR0Cz0j6NyYG/dX2UKGgGaAloD0MIKAr0ifwVc0CUhpRSlGgVS9JoFkdAs9JEhxHXmXV9lChoBmgJaA9DCG2pg7weLHNAlIaUUpRoFUuraBZHQLPSWZ/Tb351fZQoaAZoCWgPQwjTakjcI1NyQJSGlFKUaBVLlWgWR0Cz0ll/hESedX2UKGgGaAloD0MIAUwZOKCOckCUhpRSlGgVS7toFkdAs9JeYa5wwXV9lChoBmgJaA9DCI9VSs/07XFAlIaUUpRoFUu2aBZHQLPSkEk0Jnh1fZQoaAZoCWgPQwjwiXWqPJp0QJSGlFKUaBVLu2gWR0Cz0qRUipvQdX2UKGgGaAloD0MIjc9k//xVcUCUhpRSlGgVS4doFkdAs9KqALApKHV9lChoBmgJaA9DCBCU2/Y90XJAlIaUUpRoFUu0aBZHQLPSs9Ba9sd1fZQoaAZoCWgPQwhu2ozTEMdvQJSGlFKUaBVLlmgWR0Cz0rTBl+VkdX2UKGgGaAloD0MIyk+qfXpOc0CUhpRSlGgVS69oFkdAs9LCfukUK3V9lChoBmgJaA9DCAbVBiciJXNAlIaUUpRoFUu+aBZHQLPS0dgfEGZ1fZQoaAZoCWgPQwjPwMjLmjB0QJSGlFKUaBVLo2gWR0Cz0thF7UobdX2UKGgGaAloD0MIIm5OJUNOc0CUhpRSlGgVS5loFkdAs9Li6J66a3V9lChoBmgJaA9DCDRKl/7lY3FAlIaUUpRoFUuSaBZHQLPS5ii7Ci11fZQoaAZoCWgPQwj5254gMcRxQJSGlFKUaBVLjWgWR0Cz0ubVvuPWdX2UKGgGaAloD0MIdQZGXhYvckCUhpRSlGgVS7JoFkdAs9L+gsbvPXV9lChoBmgJaA9DCGkewCL/oHNAlIaUUpRoFUvMaBZHQLPTAPTXrdF1fZQoaAZoCWgPQwjkvP+P07pwQJSGlFKUaBVLlWgWR0Cz0wFpXZGsdX2UKGgGaAloD0MICvX0EXgvckCUhpRSlGgVS5loFkdAs9MJwcYIjXV9lChoBmgJaA9DCKeVQiAX6HBAlIaUUpRoFUukaBZHQLPTEMRYigV1fZQoaAZoCWgPQwiuSiL7ILdxQJSGlFKUaBVLhmgWR0Cz0ztsFdLQdX2UKGgGaAloD0MINV66SUxOckCUhpRSlGgVS6VoFkdAs9M/E9+w1XV9lChoBmgJaA9DCOsZwjGLPXJAlIaUUpRoFUulaBZHQLPTU2vjfel1fZQoaAZoCWgPQwjAWUqWk2RxQJSGlFKUaBVLqmgWR0Cz01RASnLrdX2UKGgGaAloD0MIv0f99QpLc0CUhpRSlGgVS7FoFkdAs9Np5HEuQXV9lChoBmgJaA9DCEZB8Pg2mXJAlIaUUpRoFUucaBZHQLPTcRNATqV1fZQoaAZoCWgPQwgT0hqDTgFzQJSGlFKUaBVLqmgWR0Cz03Cxu89PdX2UKGgGaAloD0MIA8+9h8tpcUCUhpRSlGgVS6poFkdAs9OHrZ8KHHV9lChoBmgJaA9DCJeOOc/YxHFAlIaUUpRoFUuuaBZHQLPTmwOe8PF1fZQoaAZoCWgPQwiL+iR32ExyQJSGlFKUaBVLuGgWR0Cz062WQfZFdX2UKGgGaAloD0MIqinJOtxLc0CUhpRSlGgVS7poFkdAs9OvSUkfLnV9lChoBmgJaA9DCFA4u7XMAW9AlIaUUpRoFUuaaBZHQLPTuqhDgIh1fZQoaAZoCWgPQwgQXOUJhP9wQJSGlFKUaBVLqmgWR0Cz07uGO+7EdX2UKGgGaAloD0MIj+TyH1JhcUCUhpRSlGgVS7FoFkdAs9O/8DSw4nV9lChoBmgJaA9DCN7H0RzZkHBAlIaUUpRoFUuzaBZHQLPTxKpT/AF1fZQoaAZoCWgPQwjzOuKQTQlzQJSGlFKUaBVLx2gWR0Cz0+JVfeDWdX2UKGgGaAloD0MIWdx/ZHrMcECUhpRSlGgVS7poFkdAs9QO+De0onV9lChoBmgJaA9DCGrAIOlTD3BAlIaUUpRoFUuSaBZHQLPUD5p8F6l1fZQoaAZoCWgPQwgPgSOBhtZvQJSGlFKUaBVLlGgWR0Cz1BnZf2K3dX2UKGgGaAloD0MIYHMOnglqcUCUhpRSlGgVS7VoFkdAs9QhbdJrcnV9lChoBmgJaA9DCC6p2m6COnBAlIaUUpRoFUu4aBZHQLPUJDR+jM51fZQoaAZoCWgPQwibxvZakPVzQJSGlFKUaBVLz2gWR0Cz1CToyKvWdX2UKGgGaAloD0MI3GgAb4FMdECUhpRSlGgVS6toFkdAs9RI9RrJsHV9lChoBmgJaA9DCB8sY0N37XJAlIaUUpRoFUvBaBZHQLPUSnJkoWp1fZQoaAZoCWgPQwjnHDwT2pRxQJSGlFKUaBVLsGgWR0Cz1F2IwdsBdX2UKGgGaAloD0MIpRKe0GuJcECUhpRSlGgVS6JoFkdAs9Rd/wy6+XV9lChoBmgJaA9DCIbI6eu513BAlIaUUpRoFUucaBZHQLPUZJSR8tx1fZQoaAZoCWgPQwgcXDrmvCdzQJSGlFKUaBVLw2gWR0Cz1IPhqCYkdX2UKGgGaAloD0MIbHwm+yfXcUCUhpRSlGgVS7toFkdAs9SI4DLbH3V9lChoBmgJaA9DCNV3flGCMnNAlIaUUpRoFUu5aBZHQLPUi7yQPqd1fZQoaAZoCWgPQwjw4CcOYBxzQJSGlFKUaBVLtmgWR0Cz1I1t0mtydX2UKGgGaAloD0MIl4xjJPtzcUCUhpRSlGgVS7hoFkdAs9SzoQnQY3V9lChoBmgJaA9DCEeP39v0AnRAlIaUUpRoFUuuaBZHQLPU1WV/tpp1fZQoaAZoCWgPQwi0dXCwNwtxQJSGlFKUaBVLuWgWR0Cz1OIrBj4IdX2UKGgGaAloD0MIZB9kWfAfckCUhpRSlGgVS6xoFkdAs9TnFrEcbXV9lChoBmgJaA9DCNwqiIEuw3FAlIaUUpRoFUuOaBZHQLPU7KgZjx11fZQoaAZoCWgPQwjdlV0weOlyQJSGlFKUaBVLtWgWR0Cz1PAn+hoNdX2UKGgGaAloD0MIsDvdeaIqckCUhpRSlGgVS7hoFkdAs9Tw8FINE3V9lChoBmgJaA9DCDTW/s52XnRAlIaUUpRoFUu+aBZHQLPU8K4hEBt1fZQoaAZoCWgPQwj4i9mS1Z1wQJSGlFKUaBVLmGgWR0Cz1Q3HWBjGdX2UKGgGaAloD0MIY/IGmDkbc0CUhpRSlGgVS7BoFkdAs9UL1AZ88nV9lChoBmgJaA9DCDqt26D27XJAlIaUUpRoFUujaBZHQLPVEnLaEjB1fZQoaAZoCWgPQwgqVaLsrWNyQJSGlFKUaBVLlGgWR0Cz1SSEQGwBdX2UKGgGaAloD0MIBwsnaT5KckCUhpRSlGgVS8toFkdAs9U5S619fHV9lChoBmgJaA9DCPT6k/gc5HBAlIaUUpRoFUulaBZHQLPVOS/CZWt1fZQoaAZoCWgPQwjhzoWRXityQJSGlFKUaBVLhmgWR0Cz1TzUmUnpdX2UKGgGaAloD0MIh/2eWGdvcUCUhpRSlGgVS6VoFkdAs9U7rt3OfXV9lChoBmgJaA9DCDOmYI2z/XJAlIaUUpRoFUu/aBZHQLPVWDvmYBx1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 992,
|
79 |
+
"n_steps": 3072,
|
80 |
+
"gamma": 0.99,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 16,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
OverFitted-MlpPolicy-test/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26ca75b6385998026f9d3c7fddaab8f0a0a9e2794b1bcc4eabf62c0d4b323c86
|
3 |
size 84893
|
OverFitted-MlpPolicy-test/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff92c1559da9847f2014ac5de9d23f29ec9388d4ba24ac02d7dc5a6894a75a68
|
3 |
size 43201
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 286.33 +/- 8.54
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f94d9fe83b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f94d9fe8440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f94d9fe84d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f94d9fe8560>", "_build": "<function ActorCriticPolicy._build at 0x7f94d9fe85f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f94d9fe8680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f94d9fe8710>", "_predict": "<function ActorCriticPolicy._predict at 0x7f94d9fe87a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f94d9fe8830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f94d9fe88c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f94d9fe8950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f94da03f270>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652894770.305567, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObSzj2k4ok//p0TvY83Aj2QHDy8quPcvAAAAAAAAAAAM0KCPIv3mD+8XRC99dY0vQhFoby+VBq9AAAAAAAAAACa1Kq9ohSVP05C2D2OHny92Y2wPFa91bwAAAAAAAAAACK2Ez+JdaQ/ZUMcPWl/JD14BO88IBCLvAAAAAAAAAAAWqdgPs2aij/Tx/E9rfUcvZWzfD1SH3C9AAAAAAAAAAAAsSo9mkayP8/FoT6c/Py8imR1PXYurj0AAAAAAAAAALgpk77/3nw/zKbGPH0Ra732Rhk9tTtevAAAAAAAAAAApiWOPWk5uD/K8Xq8seEuPKLXtbwaEqc9AAAAAAAAAAAzqoA8KvarP4Ore71G1Bm8Zz4rvTgGdLwAAAAAAAAAAM2qpT0wttg+QSiWvQryhr2ZYAm8PlUHvQAAAAAAAAAApliGveK9nT9kCqC9aogvu6Z05LxSG+m8AAAAAAAAAACTE0Q/u/WPP/JPC7zPdsy8vhpMOtAuoT0AAAAAAAAAAGR1Ar8m+GQ/7amvvUzelTyxXu28cintPAAAAAAAAAAAs2VgPmWcTD+y7d08TSNLPca9LTyQBGi9AAAAAAAAAACuVqG+6FeUP8IS4jtwrzA9X2livczByDwAAAAAAAAAAGCyb75XBqM/TBGeO7ISCL2Bq1A8quS/PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaam8HeH4WsCUhpRSlIwBbJRN6AOMAXSUR0CRnSz544ZNdX2UKGgGaAloD0MI0VlmEYpxV8CUhpRSlGgVTegDaBZHQJKCOCHymQ91fZQoaAZoCWgPQwjIQ9/dykNfwJSGlFKUaBVN6ANoFkdAkogxSk0rLHV9lChoBmgJaA9DCJARUOEIClDAlIaUUpRoFU3oA2gWR0CSkGvd/J/5dX2UKGgGaAloD0MIIhyz7EmLWsCUhpRSlGgVTegDaBZHQJKtDXtjTa11fZQoaAZoCWgPQwg1mfG20lRdwJSGlFKUaBVN6ANoFkdAkrCn3g1m8XV9lChoBmgJaA9DCMQlx53SN1nAlIaUUpRoFU3oA2gWR0CSsxJbt7a7dX2UKGgGaAloD0MI/Wg4ZW4hWcCUhpRSlGgVTegDaBZHQJKzP+glF+d1fZQoaAZoCWgPQwiOPBBZpPdawJSGlFKUaBVN6ANoFkdAkrvUFnqVyHV9lChoBmgJaA9DCCEHJcy0W2HAlIaUUpRoFU3oA2gWR0CSwloM8YAKdX2UKGgGaAloD0MI3q6XpggzV8CUhpRSlGgVTegDaBZHQJLFrKISDh91fZQoaAZoCWgPQwiYT1YMV8ZTwJSGlFKUaBVN6ANoFkdAktLyC8OCoXV9lChoBmgJaA9DCLKbGf1o1FfAlIaUUpRoFU3oA2gWR0CS1pO5avA5dX2UKGgGaAloD0MIIEWduYcGWMCUhpRSlGgVTegDaBZHQJLjZcGC7K91fZQoaAZoCWgPQwhR24ZREKNewJSGlFKUaBVN6ANoFkdAkuWHu3MINXV9lChoBmgJaA9DCOrnTUUqllzAlIaUUpRoFU3oA2gWR0CS6CdxAB1cdX2UKGgGaAloD0MIE7U0t0LLWsCUhpRSlGgVTegDaBZHQJLosona37V1fZQoaAZoCWgPQwik3lM57RBewJSGlFKUaBVN6ANoFkdAkvaDcmBvrHV9lChoBmgJaA9DCL2MYrmlhUnAlIaUUpRoFU3oA2gWR0CS+88RL9MsdX2UKGgGaAloD0MIZVHYRdFLXcCUhpRSlGgVTegDaBZHQJMDHTPSlWR1fZQoaAZoCWgPQwht/fSfNfpbwJSGlFKUaBVN6ANoFkdAkx4Rt1p0wXV9lChoBmgJaA9DCIejq3T3XmDAlIaUUpRoFU3oA2gWR0CTIW7TlT3qdX2UKGgGaAloD0MIqaENwAaYXsCUhpRSlGgVTegDaBZHQJMjdxR2r4p1fZQoaAZoCWgPQwioN6Pmq0hfwJSGlFKUaBVN6ANoFkdAkyOh4ptrK3V9lChoBmgJaA9DCDXSUnk7O13AlIaUUpRoFU3oA2gWR0CTKvAJ9iMHdX2UKGgGaAloD0MIWRZM/FHMOcCUhpRSlGgVTegDaBZHQJMw4prk8zR1fZQoaAZoCWgPQwjjiouj8o5gwJSGlFKUaBVN6ANoFkdAkzPmwV0tAnV9lChoBmgJaA9DCCcz3lZ64GLAlIaUUpRoFU3oA2gWR0CTP+00WM0hdX2UKGgGaAloD0MIUwPN59yLVcCUhpRSlGgVTegDaBZHQJNDcvXbudB1fZQoaAZoCWgPQwiefeVBelBYwJSGlFKUaBVN6ANoFkdAk1FFfeDWb3V9lChoBmgJaA9DCEW6n1MQRWLAlIaUUpRoFU3oA2gWR0CTU5bm2b5NdX2UKGgGaAloD0MIMXxETInfUsCUhpRSlGgVTegDaBZHQJNWM/yGzrx1fZQoaAZoCWgPQwivQzUlWcZYwJSGlFKUaBVN6ANoFkdAk1avFWGRFXV9lChoBmgJaA9DCLiswmaAElDAlIaUUpRoFU3oA2gWR0CTZK5U96kZdX2UKGgGaAloD0MILLe0GpKnYMCUhpRSlGgVTegDaBZHQJRBXLaEi+t1fZQoaAZoCWgPQwh2UInrGJJSwJSGlFKUaBVN6ANoFkdAlEmsy8BdU3V9lChoBmgJaA9DCL2siQW+T2LAlIaUUpRoFU3oA2gWR0CUaOSxJNCadX2UKGgGaAloD0MIBg/TvrmHUMCUhpRSlGgVTegDaBZHQJRtD2oNutR1fZQoaAZoCWgPQwj9L9eiBQNgwJSGlFKUaBVN6ANoFkdAlG+upbUwz3V9lChoBmgJaA9DCC/APjp1gVbAlIaUUpRoFU3oA2gWR0CUb9tF8XvZdX2UKGgGaAloD0MIuoYZGk8dVsCUhpRSlGgVTegDaBZHQJR4M32mHgx1fZQoaAZoCWgPQwjWxW00gDBcwJSGlFKUaBVN6ANoFkdAlH5y/47A+XV9lChoBmgJaA9DCDW1bK0vklzAlIaUUpRoFU3oA2gWR0CUgZFa0QbudX2UKGgGaAloD0MIMILGTKKwXsCUhpRSlGgVTegDaBZHQJSNP8HfMwF1fZQoaAZoCWgPQwh1lIPZhLRjwJSGlFKUaBVN6ANoFkdAlJCyx7iQ1nV9lChoBmgJaA9DCEkvaverQlHAlIaUUpRoFU3oA2gWR0CUnEDhtLtedX2UKGgGaAloD0MIEXAIVWreR8CUhpRSlGgVTegDaBZHQJSeVTYNAkd1fZQoaAZoCWgPQwiJJlDEIq1fwJSGlFKUaBVN6ANoFkdAlKC1ZowmFHV9lChoBmgJaA9DCNKqlnSUm1nAlIaUUpRoFU3oA2gWR0CUoSzreIl/dX2UKGgGaAloD0MIbLOxEvOXW8CUhpRSlGgVTegDaBZHQJStUxvegth1fZQoaAZoCWgPQwiUwrzHmTJAwJSGlFKUaBVN6ANoFkdAlLI4/3WWhXV9lChoBmgJaA9DCLIqwk1GYUDAlIaUUpRoFU3oA2gWR0CUuQG8EmpmdX2UKGgGaAloD0MIMlUwKql7WcCUhpRSlGgVTegDaBZHQJTQSf/WDpV1fZQoaAZoCWgPQwhTdvpBXShbwJSGlFKUaBVN6ANoFkdAlNNIp6QeWHV9lChoBmgJaA9DCOAO1CmPzlfAlIaUUpRoFU3oA2gWR0CU1WAeJYT1dX2UKGgGaAloD0MIdsB1xYw7WcCUhpRSlGgVTegDaBZHQJTVih11W811fZQoaAZoCWgPQwjH8q56wEtYwJSGlFKUaBVN6ANoFkdAlNyPzJ6ppHV9lChoBmgJaA9DCLUy4Zf6R17AlIaUUpRoFU3oA2gWR0CU4i83++/QdX2UKGgGaAloD0MIKA8LtaaJX8CUhpRSlGgVTegDaBZHQJTlA2FWXC11fZQoaAZoCWgPQwiiREseT51AwJSGlFKUaBVN6ANoFkdAlPEKOcUdrHV9lChoBmgJaA9DCITwaOOIEmPAlIaUUpRoFU3oA2gWR0CU9L9aUzKtdX2UKGgGaAloD0MIaCEBo8t2WMCUhpRSlGgVTegDaBZHQJUBdu5z5oJ1fZQoaAZoCWgPQwgS3h6EgEZXwJSGlFKUaBVN6ANoFkdAlQOa7dznzXV9lChoBmgJaA9DCMU6Vb5nEGDAlIaUUpRoFU3oA2gWR0CVBlDp1RtQdX2UKGgGaAloD0MImgZF8wAXYMCUhpRSlGgVTegDaBZHQJUG3u+h4+t1fZQoaAZoCWgPQwh3hqkt9X9jwJSGlFKUaBVN6ANoFkdAlRWzjaPCEnV9lChoBmgJaA9DCCAMPPcepWPAlIaUUpRoFU3oA2gWR0CVHB8aGYa6dX2UKGgGaAloD0MIKLaCpiVpVsCUhpRSlGgVTegDaBZHQJX9WG21D0F1fZQoaAZoCWgPQwjz59uCpTljwJSGlFKUaBVN6ANoFkdAlhmOnhsImnV9lChoBmgJaA9DCFORCmMLwFPAlIaUUpRoFU3oA2gWR0CWHStOmBOIdX2UKGgGaAloD0MIemzLgDPbZMCUhpRSlGgVTegDaBZHQJYfdy/9Hc11fZQoaAZoCWgPQwgpCB7f3vdZwJSGlFKUaBVN6ANoFkdAlh+gW8AaN3V9lChoBmgJaA9DCCsXKv9abWDAlIaUUpRoFU3oA2gWR0CWJ4mYBvJjdX2UKGgGaAloD0MIz6Chf4LMXsCUhpRSlGgVTegDaBZHQJYtCt7rs0J1fZQoaAZoCWgPQwgx0/avrAdWwJSGlFKUaBVN6ANoFkdAli/sxCY1HnV9lChoBmgJaA9DCJeL+E7MJWHAlIaUUpRoFU3oA2gWR0CWO57tiQT3dX2UKGgGaAloD0MI+boM/+kUUMCUhpRSlGgVTegDaBZHQJY/EFPi1iR1fZQoaAZoCWgPQwhEpnwIqiJgwJSGlFKUaBVN6ANoFkdAlkvuq//Nq3V9lChoBmgJaA9DCGbdPxaiz0vAlIaUUpRoFU3oA2gWR0CWTdYh+vyLdX2UKGgGaAloD0MIQGt+/KVhRsCUhpRSlGgVTegDaBZHQJZQQXqJMxp1fZQoaAZoCWgPQwhq2zAKgjhawJSGlFKUaBVN6ANoFkdAllDBXXAdn3V9lChoBmgJaA9DCPDd5o2TPlzAlIaUUpRoFU3oA2gWR0CWXY3IuGsWdX2UKGgGaAloD0MIFOtU+Z5DXsCUhpRSlGgVTegDaBZHQJZjCP4mCy11fZQoaAZoCWgPQwj8+4wLB5FewJSGlFKUaBVN6ANoFkdAlmpKw+t8u3V9lChoBmgJaA9DCDLMCdrkWlzAlIaUUpRoFU3oA2gWR0CWhGo24uscdX2UKGgGaAloD0MIluoCXmbLUMCUhpRSlGgVTegDaBZHQJaIAzyjHn51fZQoaAZoCWgPQwgZda29T4xawJSGlFKUaBVN6ANoFkdAloo770nPV3V9lChoBmgJaA9DCPfnoiHj61/AlIaUUpRoFU3oA2gWR0CWim0+C9RKdX2UKGgGaAloD0MIM6SK4lUYVMCUhpRSlGgVTegDaBZHQJaR/1lGwzN1fZQoaAZoCWgPQwiFBmLZzNtgwJSGlFKUaBVN6ANoFkdAlphHIhhYvHV9lChoBmgJaA9DCCE/G7luPFfAlIaUUpRoFU3oA2gWR0CWm1zp5eJIdX2UKGgGaAloD0MIeXdkrDYnW8CUhpRSlGgVTegDaBZHQJanrNdJJ5F1fZQoaAZoCWgPQwgtlbcjnPBfwJSGlFKUaBVN6ANoFkdAlqtbuYx+KHV9lChoBmgJaA9DCHHjFvNzhlPAlIaUUpRoFU3oA2gWR0CWuIFSKm8/dX2UKGgGaAloD0MIARb59cN9YsCUhpRSlGgVTegDaBZHQJa6rta6jFh1fZQoaAZoCWgPQwjdtu9Rf9VWwJSGlFKUaBVN6ANoFkdAlr0g8SwnpnV9lChoBmgJaA9DCKA2qtOBvVvAlIaUUpRoFU3oA2gWR0CWvaBlcyFgdX2UKGgGaAloD0MIHo1D/S4YXsCUhpRSlGgVTegDaBZHQJbKoUmD15B1fZQoaAZoCWgPQwhJSQ9Dq+lGwJSGlFKUaBVN6ANoFkdAls/1/+bVjXV9lChoBmgJaA9DCBNHHogsdErAlIaUUpRoFU3oA2gWR0CW18YZEUj+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 128, "n_steps": 2048, "gamma": 0.9, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f083954b440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f083954b4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f083954b560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f083954b5f0>", "_build": "<function ActorCriticPolicy._build at 0x7f083954b680>", "forward": "<function ActorCriticPolicy.forward at 0x7f083954b710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f083954b7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f083954b830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f083954b8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f083954b950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f083954b9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f083959c4b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3047424, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652905247.9312313, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANNFLL5XOSs/ohQXveEbNr8Ex5i+dhsUPQAAAAAAAAAAZjbwvSlyZD0YY6o+3nJlvjB7qz1N5Vk+AAAAAAAAAADGhnQ+aYQAP7vUUb4PehG/DtK+Pocrgr4AAAAAAAAAADNB6L2IPRo/PrP9vdZYSL/igR2+2tGWvQAAAAAAAAAAzXptvAoRfTzl/U49Ao2jvnq7nTh2oZk9AAAAAAAAAAA68xo+6hMKPnrz4b6mbAy/WT0svVbUG74AAAAAAAAAAGaGOjqP1nu6mN89PMReErJ9m0M7btz6swAAgD8AAIA/GnwtveFEjrp70uQ87NyqvNM9SbtanZW9AAAAAAAAgD+aMVY9psmUP0UFXD5FEUa/Vo/XPb5x+j0AAAAAAAAAAGZQerxclym6JMsosy5vYqqdrue68u7KMwAAgD8AAIA/5tscvv5R3z3T++E+ice9vtqaDD5WG+s9AAAAAAAAAADzMnc+F7lYP1G6LD7Ftxa/KgXvPj2Kmj0AAAAAAAAAAHPYv724mIO7klH5PRQ0gD2i4IG8fFqiugAAgD8AAIA/QAJ8PiueGD+65Ns9OpAcvwJ94j5+kuO8AAAAAAAAAACabzS9pBIgu6tzMT4idTk9xRO0vLqRGD4AAIA/AACAP+aUkj0K0Uo8sM5lvtHHUL4O+zW9TfHbvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBWwHI3ZrckCUhpRSlIwBbJRLqIwBdJRHQLPQzqW1MM91fZQoaAZoCWgPQwjFGi5yD91wQJSGlFKUaBVLnGgWR0Cz0PXZK3/hdX2UKGgGaAloD0MI8+LEV/t9cUCUhpRSlGgVS59oFkdAs9D7vb48EHV9lChoBmgJaA9DCMxB0NGqGnNAlIaUUpRoFUujaBZHQLPQ/z67/XJ1fZQoaAZoCWgPQwiphv2emBpyQJSGlFKUaBVLvWgWR0Cz0RIpMHrydX2UKGgGaAloD0MIRKM7iF0IcECUhpRSlGgVS7JoFkdAs9EaSeRPoHV9lChoBmgJaA9DCHgpdcn4B3JAlIaUUpRoFUvIaBZHQLPRIF3pwCN1fZQoaAZoCWgPQwi1pKMczOByQJSGlFKUaBVLy2gWR0Cz0ShubZvldX2UKGgGaAloD0MIBD3UtqFXdECUhpRSlGgVS7VoFkdAs9E/P4VRDXV9lChoBmgJaA9DCEHvjSGAy29AlIaUUpRoFUuTaBZHQLPRVTs6aLJ1fZQoaAZoCWgPQwgDzefcbbxxQJSGlFKUaBVLmWgWR0Cz0VSwnpjddX2UKGgGaAloD0MIvMraprgOckCUhpRSlGgVS7hoFkdAs9FbxgAp8XV9lChoBmgJaA9DCPmh0ojZoXFAlIaUUpRoFUuYaBZHQLPRYXaJyhl1fZQoaAZoCWgPQwihhJm2f3NzQJSGlFKUaBVLt2gWR0Cz0XdxVAAydX2UKGgGaAloD0MI7ImuC39UckCUhpRSlGgVS8FoFkdAs9GPRQaaTnV9lChoBmgJaA9DCCVcyCO4B3BAlIaUUpRoFUu6aBZHQLPRj8xsVL11fZQoaAZoCWgPQwiZucDlMfFyQJSGlFKUaBVLl2gWR0Cz0ZpbdJrddX2UKGgGaAloD0MIwYwpWONYb0CUhpRSlGgVS5RoFkdAs9GdObiIcnV9lChoBmgJaA9DCCRkIM8uM3JAlIaUUpRoFUvBaBZHQLPRncgQpWp1fZQoaAZoCWgPQwidDflnxptxQJSGlFKUaBVLjmgWR0Cz0baYqoZRdX2UKGgGaAloD0MIC7PQzumkcECUhpRSlGgVS6JoFkdAs9HFOrQw9XV9lChoBmgJaA9DCKJESx7Pr3FAlIaUUpRoFUu9aBZHQLPRz/Firkt1fZQoaAZoCWgPQwh6w33kFkl0QJSGlFKUaBVLs2gWR0Cz0eXfMwDedX2UKGgGaAloD0MIzZVBtYGacUCUhpRSlGgVS5JoFkdAs9H6MfigkHV9lChoBmgJaA9DCEJeDyYFDHJAlIaUUpRoFUuHaBZHQLPR+vFWGRF1fZQoaAZoCWgPQwhwzojSHjlxQJSGlFKUaBVLymgWR0Cz0ghCQcPwdX2UKGgGaAloD0MI8YEd/4UeckCUhpRSlGgVS4NoFkdAs9IOYw7DEXV9lChoBmgJaA9DCKPIWkOpR3JAlIaUUpRoFUvIaBZHQLPSHbd8ArB1fZQoaAZoCWgPQwiis8wi1B1yQJSGlFKUaBVLtGgWR0Cz0h4OlO45dX2UKGgGaAloD0MI7N0f75VuckCUhpRSlGgVS4poFkdAs9IzNke6qnV9lChoBmgJaA9DCO2cZoE2oHFAlIaUUpRoFUuXaBZHQLPSNsCT2WZ1fZQoaAZoCWgPQwjOwp52uDFxQJSGlFKUaBVLkmgWR0Cz0j6NyYG/dX2UKGgGaAloD0MIKAr0ifwVc0CUhpRSlGgVS9JoFkdAs9JEhxHXmXV9lChoBmgJaA9DCG2pg7weLHNAlIaUUpRoFUuraBZHQLPSWZ/Tb351fZQoaAZoCWgPQwjTakjcI1NyQJSGlFKUaBVLlWgWR0Cz0ll/hESedX2UKGgGaAloD0MIAUwZOKCOckCUhpRSlGgVS7toFkdAs9JeYa5wwXV9lChoBmgJaA9DCI9VSs/07XFAlIaUUpRoFUu2aBZHQLPSkEk0Jnh1fZQoaAZoCWgPQwjwiXWqPJp0QJSGlFKUaBVLu2gWR0Cz0qRUipvQdX2UKGgGaAloD0MIjc9k//xVcUCUhpRSlGgVS4doFkdAs9KqALApKHV9lChoBmgJaA9DCBCU2/Y90XJAlIaUUpRoFUu0aBZHQLPSs9Ba9sd1fZQoaAZoCWgPQwhu2ozTEMdvQJSGlFKUaBVLlmgWR0Cz0rTBl+VkdX2UKGgGaAloD0MIyk+qfXpOc0CUhpRSlGgVS69oFkdAs9LCfukUK3V9lChoBmgJaA9DCAbVBiciJXNAlIaUUpRoFUu+aBZHQLPS0dgfEGZ1fZQoaAZoCWgPQwjPwMjLmjB0QJSGlFKUaBVLo2gWR0Cz0thF7UobdX2UKGgGaAloD0MIIm5OJUNOc0CUhpRSlGgVS5loFkdAs9Li6J66a3V9lChoBmgJaA9DCDRKl/7lY3FAlIaUUpRoFUuSaBZHQLPS5ii7Ci11fZQoaAZoCWgPQwj5254gMcRxQJSGlFKUaBVLjWgWR0Cz0ubVvuPWdX2UKGgGaAloD0MIdQZGXhYvckCUhpRSlGgVS7JoFkdAs9L+gsbvPXV9lChoBmgJaA9DCGkewCL/oHNAlIaUUpRoFUvMaBZHQLPTAPTXrdF1fZQoaAZoCWgPQwjkvP+P07pwQJSGlFKUaBVLlWgWR0Cz0wFpXZGsdX2UKGgGaAloD0MICvX0EXgvckCUhpRSlGgVS5loFkdAs9MJwcYIjXV9lChoBmgJaA9DCKeVQiAX6HBAlIaUUpRoFUukaBZHQLPTEMRYigV1fZQoaAZoCWgPQwiuSiL7ILdxQJSGlFKUaBVLhmgWR0Cz0ztsFdLQdX2UKGgGaAloD0MINV66SUxOckCUhpRSlGgVS6VoFkdAs9M/E9+w1XV9lChoBmgJaA9DCOsZwjGLPXJAlIaUUpRoFUulaBZHQLPTU2vjfel1fZQoaAZoCWgPQwjAWUqWk2RxQJSGlFKUaBVLqmgWR0Cz01RASnLrdX2UKGgGaAloD0MIv0f99QpLc0CUhpRSlGgVS7FoFkdAs9Np5HEuQXV9lChoBmgJaA9DCEZB8Pg2mXJAlIaUUpRoFUucaBZHQLPTcRNATqV1fZQoaAZoCWgPQwgT0hqDTgFzQJSGlFKUaBVLqmgWR0Cz03Cxu89PdX2UKGgGaAloD0MIA8+9h8tpcUCUhpRSlGgVS6poFkdAs9OHrZ8KHHV9lChoBmgJaA9DCJeOOc/YxHFAlIaUUpRoFUuuaBZHQLPTmwOe8PF1fZQoaAZoCWgPQwiL+iR32ExyQJSGlFKUaBVLuGgWR0Cz062WQfZFdX2UKGgGaAloD0MIqinJOtxLc0CUhpRSlGgVS7poFkdAs9OvSUkfLnV9lChoBmgJaA9DCFA4u7XMAW9AlIaUUpRoFUuaaBZHQLPTuqhDgIh1fZQoaAZoCWgPQwgQXOUJhP9wQJSGlFKUaBVLqmgWR0Cz07uGO+7EdX2UKGgGaAloD0MIj+TyH1JhcUCUhpRSlGgVS7FoFkdAs9O/8DSw4nV9lChoBmgJaA9DCN7H0RzZkHBAlIaUUpRoFUuzaBZHQLPTxKpT/AF1fZQoaAZoCWgPQwjzOuKQTQlzQJSGlFKUaBVLx2gWR0Cz0+JVfeDWdX2UKGgGaAloD0MIWdx/ZHrMcECUhpRSlGgVS7poFkdAs9QO+De0onV9lChoBmgJaA9DCGrAIOlTD3BAlIaUUpRoFUuSaBZHQLPUD5p8F6l1fZQoaAZoCWgPQwgPgSOBhtZvQJSGlFKUaBVLlGgWR0Cz1BnZf2K3dX2UKGgGaAloD0MIYHMOnglqcUCUhpRSlGgVS7VoFkdAs9QhbdJrcnV9lChoBmgJaA9DCC6p2m6COnBAlIaUUpRoFUu4aBZHQLPUJDR+jM51fZQoaAZoCWgPQwibxvZakPVzQJSGlFKUaBVLz2gWR0Cz1CToyKvWdX2UKGgGaAloD0MI3GgAb4FMdECUhpRSlGgVS6toFkdAs9RI9RrJsHV9lChoBmgJaA9DCB8sY0N37XJAlIaUUpRoFUvBaBZHQLPUSnJkoWp1fZQoaAZoCWgPQwjnHDwT2pRxQJSGlFKUaBVLsGgWR0Cz1F2IwdsBdX2UKGgGaAloD0MIpRKe0GuJcECUhpRSlGgVS6JoFkdAs9Rd/wy6+XV9lChoBmgJaA9DCIbI6eu513BAlIaUUpRoFUucaBZHQLPUZJSR8tx1fZQoaAZoCWgPQwgcXDrmvCdzQJSGlFKUaBVLw2gWR0Cz1IPhqCYkdX2UKGgGaAloD0MIbHwm+yfXcUCUhpRSlGgVS7toFkdAs9SI4DLbH3V9lChoBmgJaA9DCNV3flGCMnNAlIaUUpRoFUu5aBZHQLPUi7yQPqd1fZQoaAZoCWgPQwjw4CcOYBxzQJSGlFKUaBVLtmgWR0Cz1I1t0mtydX2UKGgGaAloD0MIl4xjJPtzcUCUhpRSlGgVS7hoFkdAs9SzoQnQY3V9lChoBmgJaA9DCEeP39v0AnRAlIaUUpRoFUuuaBZHQLPU1WV/tpp1fZQoaAZoCWgPQwi0dXCwNwtxQJSGlFKUaBVLuWgWR0Cz1OIrBj4IdX2UKGgGaAloD0MIZB9kWfAfckCUhpRSlGgVS6xoFkdAs9TnFrEcbXV9lChoBmgJaA9DCNwqiIEuw3FAlIaUUpRoFUuOaBZHQLPU7KgZjx11fZQoaAZoCWgPQwjdlV0weOlyQJSGlFKUaBVLtWgWR0Cz1PAn+hoNdX2UKGgGaAloD0MIsDvdeaIqckCUhpRSlGgVS7hoFkdAs9Tw8FINE3V9lChoBmgJaA9DCDTW/s52XnRAlIaUUpRoFUu+aBZHQLPU8K4hEBt1fZQoaAZoCWgPQwj4i9mS1Z1wQJSGlFKUaBVLmGgWR0Cz1Q3HWBjGdX2UKGgGaAloD0MIY/IGmDkbc0CUhpRSlGgVS7BoFkdAs9UL1AZ88nV9lChoBmgJaA9DCDqt26D27XJAlIaUUpRoFUujaBZHQLPVEnLaEjB1fZQoaAZoCWgPQwgqVaLsrWNyQJSGlFKUaBVLlGgWR0Cz1SSEQGwBdX2UKGgGaAloD0MIBwsnaT5KckCUhpRSlGgVS8toFkdAs9U5S619fHV9lChoBmgJaA9DCPT6k/gc5HBAlIaUUpRoFUulaBZHQLPVOS/CZWt1fZQoaAZoCWgPQwjhzoWRXityQJSGlFKUaBVLhmgWR0Cz1TzUmUnpdX2UKGgGaAloD0MIh/2eWGdvcUCUhpRSlGgVS6VoFkdAs9U7rt3OfXV9lChoBmgJaA9DCDOmYI2z/XJAlIaUUpRoFUu/aBZHQLPVWDvmYBx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 992, "n_steps": 3072, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0129174a4a6162f6e4493147fab91dc4c78d303cb03e7f79b19acd1588fb813
|
3 |
+
size 189544
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 286.3322104793882, "std_reward": 8.542465074732526, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-18T21:48:05.346992"}
|