OverFitter commited on
Commit
2849157
·
1 Parent(s): ebe6f24
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
OverFitted-MlpPolicy-test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a2dd9a8e6e74070e877b361bc7e23750743f4e0345520ad88831f7da94189e0
3
+ size 144108
OverFitted-MlpPolicy-test/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
OverFitted-MlpPolicy-test/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f94d9fe83b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f94d9fe8440>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f94d9fe84d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f94d9fe8560>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f94d9fe85f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f94d9fe8680>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f94d9fe8710>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f94d9fe87a0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f94d9fe8830>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f94d9fe88c0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f94d9fe8950>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f94da03f270>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652894770.305567,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObSzj2k4ok//p0TvY83Aj2QHDy8quPcvAAAAAAAAAAAM0KCPIv3mD+8XRC99dY0vQhFoby+VBq9AAAAAAAAAACa1Kq9ohSVP05C2D2OHny92Y2wPFa91bwAAAAAAAAAACK2Ez+JdaQ/ZUMcPWl/JD14BO88IBCLvAAAAAAAAAAAWqdgPs2aij/Tx/E9rfUcvZWzfD1SH3C9AAAAAAAAAAAAsSo9mkayP8/FoT6c/Py8imR1PXYurj0AAAAAAAAAALgpk77/3nw/zKbGPH0Ra732Rhk9tTtevAAAAAAAAAAApiWOPWk5uD/K8Xq8seEuPKLXtbwaEqc9AAAAAAAAAAAzqoA8KvarP4Ore71G1Bm8Zz4rvTgGdLwAAAAAAAAAAM2qpT0wttg+QSiWvQryhr2ZYAm8PlUHvQAAAAAAAAAApliGveK9nT9kCqC9aogvu6Z05LxSG+m8AAAAAAAAAACTE0Q/u/WPP/JPC7zPdsy8vhpMOtAuoT0AAAAAAAAAAGR1Ar8m+GQ/7amvvUzelTyxXu28cintPAAAAAAAAAAAs2VgPmWcTD+y7d08TSNLPca9LTyQBGi9AAAAAAAAAACuVqG+6FeUP8IS4jtwrzA9X2livczByDwAAAAAAAAAAGCyb75XBqM/TBGeO7ISCL2Bq1A8quS/PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaam8HeH4WsCUhpRSlIwBbJRN6AOMAXSUR0CRnSz544ZNdX2UKGgGaAloD0MI0VlmEYpxV8CUhpRSlGgVTegDaBZHQJKCOCHymQ91fZQoaAZoCWgPQwjIQ9/dykNfwJSGlFKUaBVN6ANoFkdAkogxSk0rLHV9lChoBmgJaA9DCJARUOEIClDAlIaUUpRoFU3oA2gWR0CSkGvd/J/5dX2UKGgGaAloD0MIIhyz7EmLWsCUhpRSlGgVTegDaBZHQJKtDXtjTa11fZQoaAZoCWgPQwg1mfG20lRdwJSGlFKUaBVN6ANoFkdAkrCn3g1m8XV9lChoBmgJaA9DCMQlx53SN1nAlIaUUpRoFU3oA2gWR0CSsxJbt7a7dX2UKGgGaAloD0MI/Wg4ZW4hWcCUhpRSlGgVTegDaBZHQJKzP+glF+d1fZQoaAZoCWgPQwiOPBBZpPdawJSGlFKUaBVN6ANoFkdAkrvUFnqVyHV9lChoBmgJaA9DCCEHJcy0W2HAlIaUUpRoFU3oA2gWR0CSwloM8YAKdX2UKGgGaAloD0MI3q6XpggzV8CUhpRSlGgVTegDaBZHQJLFrKISDh91fZQoaAZoCWgPQwiYT1YMV8ZTwJSGlFKUaBVN6ANoFkdAktLyC8OCoXV9lChoBmgJaA9DCLKbGf1o1FfAlIaUUpRoFU3oA2gWR0CS1pO5avA5dX2UKGgGaAloD0MIIEWduYcGWMCUhpRSlGgVTegDaBZHQJLjZcGC7K91fZQoaAZoCWgPQwhR24ZREKNewJSGlFKUaBVN6ANoFkdAkuWHu3MINXV9lChoBmgJaA9DCOrnTUUqllzAlIaUUpRoFU3oA2gWR0CS6CdxAB1cdX2UKGgGaAloD0MIE7U0t0LLWsCUhpRSlGgVTegDaBZHQJLosona37V1fZQoaAZoCWgPQwik3lM57RBewJSGlFKUaBVN6ANoFkdAkvaDcmBvrHV9lChoBmgJaA9DCL2MYrmlhUnAlIaUUpRoFU3oA2gWR0CS+88RL9MsdX2UKGgGaAloD0MIZVHYRdFLXcCUhpRSlGgVTegDaBZHQJMDHTPSlWR1fZQoaAZoCWgPQwht/fSfNfpbwJSGlFKUaBVN6ANoFkdAkx4Rt1p0wXV9lChoBmgJaA9DCIejq3T3XmDAlIaUUpRoFU3oA2gWR0CTIW7TlT3qdX2UKGgGaAloD0MIqaENwAaYXsCUhpRSlGgVTegDaBZHQJMjdxR2r4p1fZQoaAZoCWgPQwioN6Pmq0hfwJSGlFKUaBVN6ANoFkdAkyOh4ptrK3V9lChoBmgJaA9DCDXSUnk7O13AlIaUUpRoFU3oA2gWR0CTKvAJ9iMHdX2UKGgGaAloD0MIWRZM/FHMOcCUhpRSlGgVTegDaBZHQJMw4prk8zR1fZQoaAZoCWgPQwjjiouj8o5gwJSGlFKUaBVN6ANoFkdAkzPmwV0tAnV9lChoBmgJaA9DCCcz3lZ64GLAlIaUUpRoFU3oA2gWR0CTP+00WM0hdX2UKGgGaAloD0MIUwPN59yLVcCUhpRSlGgVTegDaBZHQJNDcvXbudB1fZQoaAZoCWgPQwiefeVBelBYwJSGlFKUaBVN6ANoFkdAk1FFfeDWb3V9lChoBmgJaA9DCEW6n1MQRWLAlIaUUpRoFU3oA2gWR0CTU5bm2b5NdX2UKGgGaAloD0MIMXxETInfUsCUhpRSlGgVTegDaBZHQJNWM/yGzrx1fZQoaAZoCWgPQwivQzUlWcZYwJSGlFKUaBVN6ANoFkdAk1avFWGRFXV9lChoBmgJaA9DCLiswmaAElDAlIaUUpRoFU3oA2gWR0CTZK5U96kZdX2UKGgGaAloD0MILLe0GpKnYMCUhpRSlGgVTegDaBZHQJRBXLaEi+t1fZQoaAZoCWgPQwh2UInrGJJSwJSGlFKUaBVN6ANoFkdAlEmsy8BdU3V9lChoBmgJaA9DCL2siQW+T2LAlIaUUpRoFU3oA2gWR0CUaOSxJNCadX2UKGgGaAloD0MIBg/TvrmHUMCUhpRSlGgVTegDaBZHQJRtD2oNutR1fZQoaAZoCWgPQwj9L9eiBQNgwJSGlFKUaBVN6ANoFkdAlG+upbUwz3V9lChoBmgJaA9DCC/APjp1gVbAlIaUUpRoFU3oA2gWR0CUb9tF8XvZdX2UKGgGaAloD0MIuoYZGk8dVsCUhpRSlGgVTegDaBZHQJR4M32mHgx1fZQoaAZoCWgPQwjWxW00gDBcwJSGlFKUaBVN6ANoFkdAlH5y/47A+XV9lChoBmgJaA9DCDW1bK0vklzAlIaUUpRoFU3oA2gWR0CUgZFa0QbudX2UKGgGaAloD0MIMILGTKKwXsCUhpRSlGgVTegDaBZHQJSNP8HfMwF1fZQoaAZoCWgPQwh1lIPZhLRjwJSGlFKUaBVN6ANoFkdAlJCyx7iQ1nV9lChoBmgJaA9DCEkvaverQlHAlIaUUpRoFU3oA2gWR0CUnEDhtLtedX2UKGgGaAloD0MIEXAIVWreR8CUhpRSlGgVTegDaBZHQJSeVTYNAkd1fZQoaAZoCWgPQwiJJlDEIq1fwJSGlFKUaBVN6ANoFkdAlKC1ZowmFHV9lChoBmgJaA9DCNKqlnSUm1nAlIaUUpRoFU3oA2gWR0CUoSzreIl/dX2UKGgGaAloD0MIbLOxEvOXW8CUhpRSlGgVTegDaBZHQJStUxvegth1fZQoaAZoCWgPQwiUwrzHmTJAwJSGlFKUaBVN6ANoFkdAlLI4/3WWhXV9lChoBmgJaA9DCLIqwk1GYUDAlIaUUpRoFU3oA2gWR0CUuQG8EmpmdX2UKGgGaAloD0MIMlUwKql7WcCUhpRSlGgVTegDaBZHQJTQSf/WDpV1fZQoaAZoCWgPQwhTdvpBXShbwJSGlFKUaBVN6ANoFkdAlNNIp6QeWHV9lChoBmgJaA9DCOAO1CmPzlfAlIaUUpRoFU3oA2gWR0CU1WAeJYT1dX2UKGgGaAloD0MIdsB1xYw7WcCUhpRSlGgVTegDaBZHQJTVih11W811fZQoaAZoCWgPQwjH8q56wEtYwJSGlFKUaBVN6ANoFkdAlNyPzJ6ppHV9lChoBmgJaA9DCLUy4Zf6R17AlIaUUpRoFU3oA2gWR0CU4i83++/QdX2UKGgGaAloD0MIKA8LtaaJX8CUhpRSlGgVTegDaBZHQJTlA2FWXC11fZQoaAZoCWgPQwiiREseT51AwJSGlFKUaBVN6ANoFkdAlPEKOcUdrHV9lChoBmgJaA9DCITwaOOIEmPAlIaUUpRoFU3oA2gWR0CU9L9aUzKtdX2UKGgGaAloD0MIaCEBo8t2WMCUhpRSlGgVTegDaBZHQJUBdu5z5oJ1fZQoaAZoCWgPQwgS3h6EgEZXwJSGlFKUaBVN6ANoFkdAlQOa7dznzXV9lChoBmgJaA9DCMU6Vb5nEGDAlIaUUpRoFU3oA2gWR0CVBlDp1RtQdX2UKGgGaAloD0MImgZF8wAXYMCUhpRSlGgVTegDaBZHQJUG3u+h4+t1fZQoaAZoCWgPQwh3hqkt9X9jwJSGlFKUaBVN6ANoFkdAlRWzjaPCEnV9lChoBmgJaA9DCCAMPPcepWPAlIaUUpRoFU3oA2gWR0CVHB8aGYa6dX2UKGgGaAloD0MIKLaCpiVpVsCUhpRSlGgVTegDaBZHQJX9WG21D0F1fZQoaAZoCWgPQwjz59uCpTljwJSGlFKUaBVN6ANoFkdAlhmOnhsImnV9lChoBmgJaA9DCFORCmMLwFPAlIaUUpRoFU3oA2gWR0CWHStOmBOIdX2UKGgGaAloD0MIemzLgDPbZMCUhpRSlGgVTegDaBZHQJYfdy/9Hc11fZQoaAZoCWgPQwgpCB7f3vdZwJSGlFKUaBVN6ANoFkdAlh+gW8AaN3V9lChoBmgJaA9DCCsXKv9abWDAlIaUUpRoFU3oA2gWR0CWJ4mYBvJjdX2UKGgGaAloD0MIz6Chf4LMXsCUhpRSlGgVTegDaBZHQJYtCt7rs0J1fZQoaAZoCWgPQwgx0/avrAdWwJSGlFKUaBVN6ANoFkdAli/sxCY1HnV9lChoBmgJaA9DCJeL+E7MJWHAlIaUUpRoFU3oA2gWR0CWO57tiQT3dX2UKGgGaAloD0MI+boM/+kUUMCUhpRSlGgVTegDaBZHQJY/EFPi1iR1fZQoaAZoCWgPQwhEpnwIqiJgwJSGlFKUaBVN6ANoFkdAlkvuq//Nq3V9lChoBmgJaA9DCGbdPxaiz0vAlIaUUpRoFU3oA2gWR0CWTdYh+vyLdX2UKGgGaAloD0MIQGt+/KVhRsCUhpRSlGgVTegDaBZHQJZQQXqJMxp1fZQoaAZoCWgPQwhq2zAKgjhawJSGlFKUaBVN6ANoFkdAllDBXXAdn3V9lChoBmgJaA9DCPDd5o2TPlzAlIaUUpRoFU3oA2gWR0CWXY3IuGsWdX2UKGgGaAloD0MIFOtU+Z5DXsCUhpRSlGgVTegDaBZHQJZjCP4mCy11fZQoaAZoCWgPQwj8+4wLB5FewJSGlFKUaBVN6ANoFkdAlmpKw+t8u3V9lChoBmgJaA9DCDLMCdrkWlzAlIaUUpRoFU3oA2gWR0CWhGo24uscdX2UKGgGaAloD0MIluoCXmbLUMCUhpRSlGgVTegDaBZHQJaIAzyjHn51fZQoaAZoCWgPQwgZda29T4xawJSGlFKUaBVN6ANoFkdAloo770nPV3V9lChoBmgJaA9DCPfnoiHj61/AlIaUUpRoFU3oA2gWR0CWim0+C9RKdX2UKGgGaAloD0MIM6SK4lUYVMCUhpRSlGgVTegDaBZHQJaR/1lGwzN1fZQoaAZoCWgPQwiFBmLZzNtgwJSGlFKUaBVN6ANoFkdAlphHIhhYvHV9lChoBmgJaA9DCCE/G7luPFfAlIaUUpRoFU3oA2gWR0CWm1zp5eJIdX2UKGgGaAloD0MIeXdkrDYnW8CUhpRSlGgVTegDaBZHQJanrNdJJ5F1fZQoaAZoCWgPQwgtlbcjnPBfwJSGlFKUaBVN6ANoFkdAlqtbuYx+KHV9lChoBmgJaA9DCHHjFvNzhlPAlIaUUpRoFU3oA2gWR0CWuIFSKm8/dX2UKGgGaAloD0MIARb59cN9YsCUhpRSlGgVTegDaBZHQJa6rta6jFh1fZQoaAZoCWgPQwjdtu9Rf9VWwJSGlFKUaBVN6ANoFkdAlr0g8SwnpnV9lChoBmgJaA9DCKA2qtOBvVvAlIaUUpRoFU3oA2gWR0CWvaBlcyFgdX2UKGgGaAloD0MIHo1D/S4YXsCUhpRSlGgVTegDaBZHQJbKoUmD15B1fZQoaAZoCWgPQwhJSQ9Dq+lGwJSGlFKUaBVN6ANoFkdAls/1/+bVjXV9lChoBmgJaA9DCBNHHogsdErAlIaUUpRoFU3oA2gWR0CW18YZEUj+dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 128,
79
+ "n_steps": 2048,
80
+ "gamma": 0.9,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 32,
86
+ "n_epochs": 8,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
OverFitted-MlpPolicy-test/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:973f7be03cdf23411270e76bb4fa024f0734d2586898d48038bc917a42aa66c8
3
+ size 84893
OverFitted-MlpPolicy-test/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17db271388e52cceec7671123808d17faa3f4a6da66d825cd91e83d5e6cdeeac
3
+ size 43201
OverFitted-MlpPolicy-test/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
OverFitted-MlpPolicy-test/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -172.12 +/- 38.90
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f94d9fe83b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f94d9fe8440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f94d9fe84d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f94d9fe8560>", "_build": "<function ActorCriticPolicy._build at 0x7f94d9fe85f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f94d9fe8680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f94d9fe8710>", "_predict": "<function ActorCriticPolicy._predict at 0x7f94d9fe87a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f94d9fe8830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f94d9fe88c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f94d9fe8950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f94da03f270>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652894770.305567, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObSzj2k4ok//p0TvY83Aj2QHDy8quPcvAAAAAAAAAAAM0KCPIv3mD+8XRC99dY0vQhFoby+VBq9AAAAAAAAAACa1Kq9ohSVP05C2D2OHny92Y2wPFa91bwAAAAAAAAAACK2Ez+JdaQ/ZUMcPWl/JD14BO88IBCLvAAAAAAAAAAAWqdgPs2aij/Tx/E9rfUcvZWzfD1SH3C9AAAAAAAAAAAAsSo9mkayP8/FoT6c/Py8imR1PXYurj0AAAAAAAAAALgpk77/3nw/zKbGPH0Ra732Rhk9tTtevAAAAAAAAAAApiWOPWk5uD/K8Xq8seEuPKLXtbwaEqc9AAAAAAAAAAAzqoA8KvarP4Ore71G1Bm8Zz4rvTgGdLwAAAAAAAAAAM2qpT0wttg+QSiWvQryhr2ZYAm8PlUHvQAAAAAAAAAApliGveK9nT9kCqC9aogvu6Z05LxSG+m8AAAAAAAAAACTE0Q/u/WPP/JPC7zPdsy8vhpMOtAuoT0AAAAAAAAAAGR1Ar8m+GQ/7amvvUzelTyxXu28cintPAAAAAAAAAAAs2VgPmWcTD+y7d08TSNLPca9LTyQBGi9AAAAAAAAAACuVqG+6FeUP8IS4jtwrzA9X2livczByDwAAAAAAAAAAGCyb75XBqM/TBGeO7ISCL2Bq1A8quS/PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaam8HeH4WsCUhpRSlIwBbJRN6AOMAXSUR0CRnSz544ZNdX2UKGgGaAloD0MI0VlmEYpxV8CUhpRSlGgVTegDaBZHQJKCOCHymQ91fZQoaAZoCWgPQwjIQ9/dykNfwJSGlFKUaBVN6ANoFkdAkogxSk0rLHV9lChoBmgJaA9DCJARUOEIClDAlIaUUpRoFU3oA2gWR0CSkGvd/J/5dX2UKGgGaAloD0MIIhyz7EmLWsCUhpRSlGgVTegDaBZHQJKtDXtjTa11fZQoaAZoCWgPQwg1mfG20lRdwJSGlFKUaBVN6ANoFkdAkrCn3g1m8XV9lChoBmgJaA9DCMQlx53SN1nAlIaUUpRoFU3oA2gWR0CSsxJbt7a7dX2UKGgGaAloD0MI/Wg4ZW4hWcCUhpRSlGgVTegDaBZHQJKzP+glF+d1fZQoaAZoCWgPQwiOPBBZpPdawJSGlFKUaBVN6ANoFkdAkrvUFnqVyHV9lChoBmgJaA9DCCEHJcy0W2HAlIaUUpRoFU3oA2gWR0CSwloM8YAKdX2UKGgGaAloD0MI3q6XpggzV8CUhpRSlGgVTegDaBZHQJLFrKISDh91fZQoaAZoCWgPQwiYT1YMV8ZTwJSGlFKUaBVN6ANoFkdAktLyC8OCoXV9lChoBmgJaA9DCLKbGf1o1FfAlIaUUpRoFU3oA2gWR0CS1pO5avA5dX2UKGgGaAloD0MIIEWduYcGWMCUhpRSlGgVTegDaBZHQJLjZcGC7K91fZQoaAZoCWgPQwhR24ZREKNewJSGlFKUaBVN6ANoFkdAkuWHu3MINXV9lChoBmgJaA9DCOrnTUUqllzAlIaUUpRoFU3oA2gWR0CS6CdxAB1cdX2UKGgGaAloD0MIE7U0t0LLWsCUhpRSlGgVTegDaBZHQJLosona37V1fZQoaAZoCWgPQwik3lM57RBewJSGlFKUaBVN6ANoFkdAkvaDcmBvrHV9lChoBmgJaA9DCL2MYrmlhUnAlIaUUpRoFU3oA2gWR0CS+88RL9MsdX2UKGgGaAloD0MIZVHYRdFLXcCUhpRSlGgVTegDaBZHQJMDHTPSlWR1fZQoaAZoCWgPQwht/fSfNfpbwJSGlFKUaBVN6ANoFkdAkx4Rt1p0wXV9lChoBmgJaA9DCIejq3T3XmDAlIaUUpRoFU3oA2gWR0CTIW7TlT3qdX2UKGgGaAloD0MIqaENwAaYXsCUhpRSlGgVTegDaBZHQJMjdxR2r4p1fZQoaAZoCWgPQwioN6Pmq0hfwJSGlFKUaBVN6ANoFkdAkyOh4ptrK3V9lChoBmgJaA9DCDXSUnk7O13AlIaUUpRoFU3oA2gWR0CTKvAJ9iMHdX2UKGgGaAloD0MIWRZM/FHMOcCUhpRSlGgVTegDaBZHQJMw4prk8zR1fZQoaAZoCWgPQwjjiouj8o5gwJSGlFKUaBVN6ANoFkdAkzPmwV0tAnV9lChoBmgJaA9DCCcz3lZ64GLAlIaUUpRoFU3oA2gWR0CTP+00WM0hdX2UKGgGaAloD0MIUwPN59yLVcCUhpRSlGgVTegDaBZHQJNDcvXbudB1fZQoaAZoCWgPQwiefeVBelBYwJSGlFKUaBVN6ANoFkdAk1FFfeDWb3V9lChoBmgJaA9DCEW6n1MQRWLAlIaUUpRoFU3oA2gWR0CTU5bm2b5NdX2UKGgGaAloD0MIMXxETInfUsCUhpRSlGgVTegDaBZHQJNWM/yGzrx1fZQoaAZoCWgPQwivQzUlWcZYwJSGlFKUaBVN6ANoFkdAk1avFWGRFXV9lChoBmgJaA9DCLiswmaAElDAlIaUUpRoFU3oA2gWR0CTZK5U96kZdX2UKGgGaAloD0MILLe0GpKnYMCUhpRSlGgVTegDaBZHQJRBXLaEi+t1fZQoaAZoCWgPQwh2UInrGJJSwJSGlFKUaBVN6ANoFkdAlEmsy8BdU3V9lChoBmgJaA9DCL2siQW+T2LAlIaUUpRoFU3oA2gWR0CUaOSxJNCadX2UKGgGaAloD0MIBg/TvrmHUMCUhpRSlGgVTegDaBZHQJRtD2oNutR1fZQoaAZoCWgPQwj9L9eiBQNgwJSGlFKUaBVN6ANoFkdAlG+upbUwz3V9lChoBmgJaA9DCC/APjp1gVbAlIaUUpRoFU3oA2gWR0CUb9tF8XvZdX2UKGgGaAloD0MIuoYZGk8dVsCUhpRSlGgVTegDaBZHQJR4M32mHgx1fZQoaAZoCWgPQwjWxW00gDBcwJSGlFKUaBVN6ANoFkdAlH5y/47A+XV9lChoBmgJaA9DCDW1bK0vklzAlIaUUpRoFU3oA2gWR0CUgZFa0QbudX2UKGgGaAloD0MIMILGTKKwXsCUhpRSlGgVTegDaBZHQJSNP8HfMwF1fZQoaAZoCWgPQwh1lIPZhLRjwJSGlFKUaBVN6ANoFkdAlJCyx7iQ1nV9lChoBmgJaA9DCEkvaverQlHAlIaUUpRoFU3oA2gWR0CUnEDhtLtedX2UKGgGaAloD0MIEXAIVWreR8CUhpRSlGgVTegDaBZHQJSeVTYNAkd1fZQoaAZoCWgPQwiJJlDEIq1fwJSGlFKUaBVN6ANoFkdAlKC1ZowmFHV9lChoBmgJaA9DCNKqlnSUm1nAlIaUUpRoFU3oA2gWR0CUoSzreIl/dX2UKGgGaAloD0MIbLOxEvOXW8CUhpRSlGgVTegDaBZHQJStUxvegth1fZQoaAZoCWgPQwiUwrzHmTJAwJSGlFKUaBVN6ANoFkdAlLI4/3WWhXV9lChoBmgJaA9DCLIqwk1GYUDAlIaUUpRoFU3oA2gWR0CUuQG8EmpmdX2UKGgGaAloD0MIMlUwKql7WcCUhpRSlGgVTegDaBZHQJTQSf/WDpV1fZQoaAZoCWgPQwhTdvpBXShbwJSGlFKUaBVN6ANoFkdAlNNIp6QeWHV9lChoBmgJaA9DCOAO1CmPzlfAlIaUUpRoFU3oA2gWR0CU1WAeJYT1dX2UKGgGaAloD0MIdsB1xYw7WcCUhpRSlGgVTegDaBZHQJTVih11W811fZQoaAZoCWgPQwjH8q56wEtYwJSGlFKUaBVN6ANoFkdAlNyPzJ6ppHV9lChoBmgJaA9DCLUy4Zf6R17AlIaUUpRoFU3oA2gWR0CU4i83++/QdX2UKGgGaAloD0MIKA8LtaaJX8CUhpRSlGgVTegDaBZHQJTlA2FWXC11fZQoaAZoCWgPQwiiREseT51AwJSGlFKUaBVN6ANoFkdAlPEKOcUdrHV9lChoBmgJaA9DCITwaOOIEmPAlIaUUpRoFU3oA2gWR0CU9L9aUzKtdX2UKGgGaAloD0MIaCEBo8t2WMCUhpRSlGgVTegDaBZHQJUBdu5z5oJ1fZQoaAZoCWgPQwgS3h6EgEZXwJSGlFKUaBVN6ANoFkdAlQOa7dznzXV9lChoBmgJaA9DCMU6Vb5nEGDAlIaUUpRoFU3oA2gWR0CVBlDp1RtQdX2UKGgGaAloD0MImgZF8wAXYMCUhpRSlGgVTegDaBZHQJUG3u+h4+t1fZQoaAZoCWgPQwh3hqkt9X9jwJSGlFKUaBVN6ANoFkdAlRWzjaPCEnV9lChoBmgJaA9DCCAMPPcepWPAlIaUUpRoFU3oA2gWR0CVHB8aGYa6dX2UKGgGaAloD0MIKLaCpiVpVsCUhpRSlGgVTegDaBZHQJX9WG21D0F1fZQoaAZoCWgPQwjz59uCpTljwJSGlFKUaBVN6ANoFkdAlhmOnhsImnV9lChoBmgJaA9DCFORCmMLwFPAlIaUUpRoFU3oA2gWR0CWHStOmBOIdX2UKGgGaAloD0MIemzLgDPbZMCUhpRSlGgVTegDaBZHQJYfdy/9Hc11fZQoaAZoCWgPQwgpCB7f3vdZwJSGlFKUaBVN6ANoFkdAlh+gW8AaN3V9lChoBmgJaA9DCCsXKv9abWDAlIaUUpRoFU3oA2gWR0CWJ4mYBvJjdX2UKGgGaAloD0MIz6Chf4LMXsCUhpRSlGgVTegDaBZHQJYtCt7rs0J1fZQoaAZoCWgPQwgx0/avrAdWwJSGlFKUaBVN6ANoFkdAli/sxCY1HnV9lChoBmgJaA9DCJeL+E7MJWHAlIaUUpRoFU3oA2gWR0CWO57tiQT3dX2UKGgGaAloD0MI+boM/+kUUMCUhpRSlGgVTegDaBZHQJY/EFPi1iR1fZQoaAZoCWgPQwhEpnwIqiJgwJSGlFKUaBVN6ANoFkdAlkvuq//Nq3V9lChoBmgJaA9DCGbdPxaiz0vAlIaUUpRoFU3oA2gWR0CWTdYh+vyLdX2UKGgGaAloD0MIQGt+/KVhRsCUhpRSlGgVTegDaBZHQJZQQXqJMxp1fZQoaAZoCWgPQwhq2zAKgjhawJSGlFKUaBVN6ANoFkdAllDBXXAdn3V9lChoBmgJaA9DCPDd5o2TPlzAlIaUUpRoFU3oA2gWR0CWXY3IuGsWdX2UKGgGaAloD0MIFOtU+Z5DXsCUhpRSlGgVTegDaBZHQJZjCP4mCy11fZQoaAZoCWgPQwj8+4wLB5FewJSGlFKUaBVN6ANoFkdAlmpKw+t8u3V9lChoBmgJaA9DCDLMCdrkWlzAlIaUUpRoFU3oA2gWR0CWhGo24uscdX2UKGgGaAloD0MIluoCXmbLUMCUhpRSlGgVTegDaBZHQJaIAzyjHn51fZQoaAZoCWgPQwgZda29T4xawJSGlFKUaBVN6ANoFkdAloo770nPV3V9lChoBmgJaA9DCPfnoiHj61/AlIaUUpRoFU3oA2gWR0CWim0+C9RKdX2UKGgGaAloD0MIM6SK4lUYVMCUhpRSlGgVTegDaBZHQJaR/1lGwzN1fZQoaAZoCWgPQwiFBmLZzNtgwJSGlFKUaBVN6ANoFkdAlphHIhhYvHV9lChoBmgJaA9DCCE/G7luPFfAlIaUUpRoFU3oA2gWR0CWm1zp5eJIdX2UKGgGaAloD0MIeXdkrDYnW8CUhpRSlGgVTegDaBZHQJanrNdJJ5F1fZQoaAZoCWgPQwgtlbcjnPBfwJSGlFKUaBVN6ANoFkdAlqtbuYx+KHV9lChoBmgJaA9DCHHjFvNzhlPAlIaUUpRoFU3oA2gWR0CWuIFSKm8/dX2UKGgGaAloD0MIARb59cN9YsCUhpRSlGgVTegDaBZHQJa6rta6jFh1fZQoaAZoCWgPQwjdtu9Rf9VWwJSGlFKUaBVN6ANoFkdAlr0g8SwnpnV9lChoBmgJaA9DCKA2qtOBvVvAlIaUUpRoFU3oA2gWR0CWvaBlcyFgdX2UKGgGaAloD0MIHo1D/S4YXsCUhpRSlGgVTegDaBZHQJbKoUmD15B1fZQoaAZoCWgPQwhJSQ9Dq+lGwJSGlFKUaBVN6ANoFkdAls/1/+bVjXV9lChoBmgJaA9DCBNHHogsdErAlIaUUpRoFU3oA2gWR0CW18YZEUj+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 128, "n_steps": 2048, "gamma": 0.9, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1008fe97a6b7a27f68f3e46671fe8e5cdcb1f51ff9d4528f986d776b690c3a0
3
+ size 169609
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -172.12184966658825, "std_reward": 38.903109824459484, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-18T18:02:17.640297"}