MATE_Models / both /README.md
MasterVito
both strategy and tactic model
8bc0a1b
metadata
license: other
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
  - llama-factory
  - full
  - generated_from_trainer
model-index:
  - name: both
    results: []

both

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the chess_explain_both_00, the chess_explain_both_01, the chess_explain_both_02, the chess_explain_both_03, the chess_explain_both_04, the chess_explain_both_05, the chess_explain_both_06, the chess_explain_both_07, the chess_explain_both_08, the chess_explain_both_09, the chess_explain_both_10, the chess_explain_both_11, the chess_explain_both_12, the chess_explain_both_13 and the chess_explain_both_14 datasets. It achieves the following results on the evaluation set:

  • Loss: 0.0369

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 512
  • total_eval_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 8.0

Training results

Training Loss Epoch Step Validation Loss
0.0144 1.6260 1000 0.0148
0.0068 3.2520 2000 0.0183
0.003 4.8780 3000 0.0207
0.0001 6.5041 4000 0.0359

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1