|
--- |
|
library_name: transformers |
|
license: llama3.1 |
|
base_model: meta-llama/Llama-3.1-8B |
|
tags: |
|
- llama-factory |
|
- generated_from_trainer |
|
model-index: |
|
- name: llama_8b_lima_42 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama_8b_lima_42 |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9002 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 2 |
|
- seed: 66 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 6 |
|
- total_train_batch_size: 36 |
|
- total_eval_batch_size: 4 |
|
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: polynomial |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.0356 | 0.0686 | 80 | 0.9711 | |
|
| 1.0348 | 0.1372 | 160 | 0.9355 | |
|
| 0.7212 | 0.2058 | 240 | 0.9225 | |
|
| 0.8077 | 0.2744 | 320 | 0.9142 | |
|
| 0.8442 | 0.3430 | 400 | 0.9068 | |
|
| 0.831 | 0.4116 | 480 | 0.9032 | |
|
| 0.9696 | 0.4802 | 560 | 0.8975 | |
|
| 0.9949 | 0.5488 | 640 | 0.8972 | |
|
| 0.8154 | 0.6174 | 720 | 0.8948 | |
|
| 0.9682 | 0.6860 | 800 | 0.8931 | |
|
| 0.9491 | 0.7546 | 880 | 0.9030 | |
|
| 1.068 | 0.8232 | 960 | 0.9022 | |
|
| 1.06 | 0.8918 | 1040 | 0.9013 | |
|
| 0.8302 | 0.9604 | 1120 | 0.9002 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|