InternVL-14B-FlickrCN-FT-364px

What is InternVL?

[Paper] [GitHub] [Chat Demo]

InternVL scales up the ViT to 6B parameters and aligns it with LLM.

It is the largest open-source vision/vision-language foundation model (14B) to date, achieving 32 state-of-the-art performances on a wide range of tasks such as visual perception, cross-modal retrieval, multimodal dialogue, etc.

image/png

Model Details

  • Model Type: fine-tuned retrieval model
  • Support Tasks: image-text retrieval
  • Model Stats:
    • Params: 14B
    • Image size: 364 x 364
  • Fine-tune Dataset: FlickrCN

Setting

image/png

Performance

See this document for more details about the evaluation.

image/png

Model Usage

Note: the prefix 'summarize:' and tokenizer.pad_token_id = 0 are necessary. Their absence will lead to abnormal results.

import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
from transformers import AutoTokenizer


model = AutoModel.from_pretrained(
    'OpenGVLab/InternVL-14B-FlickrCN-FT-364px',
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).cuda().eval()

image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL-14B-FlickrCN-FT-364px')

tokenizer = AutoTokenizer.from_pretrained(
    'OpenGVLab/InternVL-14B-FlickrCN-FT-364px', use_fast=False, add_eos_token=True)
tokenizer.pad_token_id = 0  # set pad_token_id to 0

images = [
    Image.open('./examples/image1.jpg').convert('RGB'),
    Image.open('./examples/image2.jpg').convert('RGB'),
    Image.open('./examples/image3.jpg').convert('RGB')
]
prefix = 'summarize:'
texts = [
    prefix + 'a photo of a red panda',  # English
    prefix + '一张熊猫的照片',  # Chinese
    prefix + '二匹の猫の写真'  # Japanese
]

pixel_values = image_processor(images=images, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()
input_ids = tokenizer(texts, return_tensors='pt', max_length=80,
                      truncation=True, padding='max_length').input_ids.cuda()

# InternVL-C
logits_per_image, logits_per_text = model(
    image=pixel_values, text=input_ids, mode='InternVL-C')
probs = logits_per_image.softmax(dim=-1)

# InternVL-G
logits_per_image, logits_per_text = model(
    image=pixel_values, text=input_ids, mode='InternVL-G')
probs = logits_per_image.softmax(dim=-1)

Citation

If you find this project useful in your research, please consider citing:

@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}

Acknowledgement

InternVL is built with reference to the code of the following projects: OpenAI CLIP, Open CLIP, CLIP Benchmark, EVA, InternImage, ViT-Adapter, MMSegmentation, Transformers, DINOv2, BLIP-2, Qwen-VL, and LLaVA-1.5. Thanks for their awesome work!

Downloads last month
14
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for OpenGVLab/InternVL-14B-FlickrCN-FT-364px

Finetuned
(2)
this model

Collection including OpenGVLab/InternVL-14B-FlickrCN-FT-364px