🩺 MedGemma-270M

MedGemma-270M is a 270M-parameter Gemma 3 model fine-tuned with LoRA on the MIRIAD-4.4M medical Q&A dataset.
This model is designed for fast, domain-specialized inference on small GPUs and CPUs.


Model Details

  • Base Model: google/gemma-3-270m
  • Parameters: 270M
  • Fine-tuning Method: LoRA (r=8, alpha=16, dropout=0.0)
  • Framework: Unsloth for efficient training
  • Dataset: miriad-4.4M
  • Task: Medical question answering & clinical reasoning

Training Configuration

  • Epochs: 1
  • Max Steps: 600
  • Batch Size: 1 (grad_acc=24)
  • Max Seq Length: 384
  • Optimizer: AdamW 8-bit
  • Precision: float16 (fp16)

Usage

Inference (Transformers)

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_id = "OmerShah/medgemma-270m"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")

prompt = "What are the common symptoms of iron deficiency anemia?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
5
Safetensors
Model size
268M params
Tensor type
BF16
·
F16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for OmerShah/MedGemma

Finetuned
(5)
this model

Dataset used to train OmerShah/MedGemma