Log-Analysis-Model-DistilBert
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0454
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0635 | 0.1 | 500 | 0.0563 |
0.0523 | 0.2 | 1000 | 0.0571 |
0.0462 | 0.29 | 1500 | 0.0600 |
0.0398 | 0.39 | 2000 | 0.0618 |
0.0456 | 0.49 | 2500 | 0.0593 |
0.0799 | 0.59 | 3000 | 0.0579 |
0.0823 | 0.69 | 3500 | 0.0595 |
0.061 | 0.79 | 4000 | 0.0751 |
0.0486 | 0.88 | 4500 | 0.0555 |
0.065 | 0.98 | 5000 | 0.0584 |
0.0553 | 1.08 | 5500 | 0.0562 |
0.051 | 1.18 | 6000 | 0.0564 |
0.0698 | 1.28 | 6500 | 0.0537 |
0.0556 | 1.37 | 7000 | 0.0498 |
0.059 | 1.47 | 7500 | 0.0571 |
0.0556 | 1.57 | 8000 | 0.0514 |
0.0503 | 1.67 | 8500 | 0.0571 |
0.0629 | 1.77 | 9000 | 0.0515 |
0.041 | 1.87 | 9500 | 0.0551 |
0.0465 | 1.96 | 10000 | 0.0593 |
0.0523 | 2.06 | 10500 | 0.0540 |
0.0511 | 2.16 | 11000 | 0.0552 |
0.0633 | 2.26 | 11500 | 0.0530 |
0.0487 | 2.36 | 12000 | 0.0477 |
0.05 | 2.46 | 12500 | 0.0494 |
0.0536 | 2.55 | 13000 | 0.0483 |
0.0313 | 2.65 | 13500 | 0.0508 |
0.0533 | 2.75 | 14000 | 0.0502 |
0.0419 | 2.85 | 14500 | 0.0509 |
0.0298 | 2.95 | 15000 | 0.0556 |
0.0554 | 3.04 | 15500 | 0.0504 |
0.0568 | 3.14 | 16000 | 0.0473 |
0.052 | 3.24 | 16500 | 0.0525 |
0.0342 | 3.34 | 17000 | 0.0531 |
0.0519 | 3.44 | 17500 | 0.0485 |
0.0354 | 3.54 | 18000 | 0.0529 |
0.0539 | 3.63 | 18500 | 0.0489 |
0.0381 | 3.73 | 19000 | 0.0466 |
0.0392 | 3.83 | 19500 | 0.0480 |
0.0571 | 3.93 | 20000 | 0.0458 |
0.0314 | 4.03 | 20500 | 0.0475 |
0.0357 | 4.12 | 21000 | 0.0480 |
0.0607 | 4.22 | 21500 | 0.0454 |
0.0339 | 4.32 | 22000 | 0.0466 |
0.033 | 4.42 | 22500 | 0.0480 |
0.0524 | 4.52 | 23000 | 0.0465 |
0.0431 | 4.62 | 23500 | 0.0467 |
0.0521 | 4.71 | 24000 | 0.0459 |
0.039 | 4.81 | 24500 | 0.0464 |
0.0333 | 4.91 | 25000 | 0.0466 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.2.0+cu118
- Datasets 2.16.1
- Tokenizers 0.13.3
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for OMEGAMAX10/Log-Analysis-Model-DistilBert
Base model
distilbert/distilbert-base-uncased