NoorNizar's picture
Update model card (via --mco)
de4b46d verified
metadata
library_name: transformers
tags:
  - llmcompressor
  - quantization
  - wint8

Meta-Llama-3-8B-Instruct-WINT8

This model is a 8-bit quantized version of meta-llama/Meta-Llama-3-8B-Instruct "using the llmcompressor library.

Quantization Details

quant_stage:
      quant_modifiers:
        QuantizationModifier:
          ignore: [lm_head]
          config_groups:
            group_0:
              weights: {num_bits: 8, type: int, symmetric: true, strategy: channel, dynamic: false}
              targets: [Linear]

Evaluation Results

The following table shows the evaluation results on various benchmarks compared to the baseline (non-quantized) model.

Task Baseline Metric (10.0% Threshold) Quantized Metric Metric Type
winogrande 0.7577 0.7616 acc,none

How to Use

You can load the quantized model and tokenizer using the transformers library:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "NoorNizar/Meta-Llama-3-8B-Instruct-WINT8"

model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Example usage (replace with your specific task)
prompt = "Hello, world!"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Disclaimer

This model was quantized automatically using a script. Performance and behavior might differ slightly from the original base model.