Using nightwing3 in the mix seems to have been a mistake. Redoing this train
Model Uses ChatML; Training details below.
Single Epoch - 237 Step qlora test train at ebs-16 (bs 8 grad accumulation 2 lr of 1e-6 rank/alpha = 64): About 550 Conversation keys from each set using seed 69 to shuffle the sets.
Unsloth Example for seeding sets randomly/applying chat format.
from datasets import load_dataset, concatenate_datasets
from unsloth.chat_templates import get_chat_template
import os
# Expanded list of dataset identifiers
datasets_list = [
"hfusername/modelname",
"hfusername/modelname",
"hfusername/modelname",
"hfusername/modelname",
"hfusername/modelname",
]
# Directory to save the temporary dataset
output_dir = "temp_training_dataset"
# Chat template setup
tokenizer = get_chat_template(
tokenizer,
chat_template="chatml", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"}, # ShareGPT style
map_eos_token=False, # Maps <|im_end|> to </s> instead
)
# Function to format conversations using the chat template
def formatting_prompts_func(examples):
convos = examples["conversations"]
texts = [
tokenizer.apply_chat_template(convo, tokenize=False, add_generation_prompt=False)
for convo in convos
]
return {"text": texts}
# Function to load, format, and sample datasets
def load_format_and_sample(datasets_list, formatting_function, sample_size=550):
sampled_datasets = []
for dataset_id in datasets_list:
# Load the dataset
dataset = load_dataset(dataset_id, split="train")
# Apply formatting
formatted_dataset = dataset.map(formatting_function, batched=True)
# Shuffle and sample
sampled_dataset = formatted_dataset.shuffle(seed=69).select(range(min(len(formatted_dataset), sample_size)))
sampled_datasets.append(sampled_dataset)
return sampled_datasets
# Load, format, and sample datasets
sampled_datasets = load_format_and_sample(datasets_list, formatting_prompts_func, sample_size=550)
# Combine sampled datasets into one temporary set
temporary_training_set = concatenate_datasets(sampled_datasets)
# Save the dataset locally
if not os.path.exists(output_dir):
os.makedirs(output_dir)
temporary_training_set.save_to_disk(output_dir)
# Redefine the temporary training set as 'dataset' for further use
dataset = temporary_training_set
# Print info about the combined set
print(f"Temporary training dataset saved to '{output_dir}'")
print(dataset)
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.