Upload modeling_dots_vision.py
Browse files- modeling_dots_vision.py +404 -0
modeling_dots_vision.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
from flash_attn import flash_attn_varlen_func
|
8 |
+
from torch.nn import LayerNorm
|
9 |
+
from transformers.modeling_utils import PreTrainedModel
|
10 |
+
from .configuration_dots import DotsVisionConfig
|
11 |
+
|
12 |
+
|
13 |
+
def rotate_half(x):
|
14 |
+
"""Rotates half the hidden dims of the input."""
|
15 |
+
x1 = x[..., : x.shape[-1] // 2]
|
16 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
17 |
+
return torch.cat((-x2, x1), dim=-1)
|
18 |
+
|
19 |
+
|
20 |
+
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
|
21 |
+
orig_dtype = tensor.dtype
|
22 |
+
tensor = tensor.float()
|
23 |
+
|
24 |
+
cos = freqs.cos()
|
25 |
+
sin = freqs.sin()
|
26 |
+
|
27 |
+
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
28 |
+
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
29 |
+
|
30 |
+
output = (tensor * cos) + (rotate_half(tensor) * sin)
|
31 |
+
|
32 |
+
output = output.to(orig_dtype)
|
33 |
+
|
34 |
+
return output
|
35 |
+
|
36 |
+
|
37 |
+
class VisionRotaryEmbedding(nn.Module):
|
38 |
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
39 |
+
super().__init__()
|
40 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
41 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
42 |
+
|
43 |
+
def forward(self, seqlen: int) -> torch.Tensor:
|
44 |
+
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
45 |
+
freqs = torch.outer(seq, self.inv_freq)
|
46 |
+
return freqs
|
47 |
+
|
48 |
+
|
49 |
+
class PatchMerger(nn.Module):
|
50 |
+
def __init__(
|
51 |
+
self,
|
52 |
+
dim: int,
|
53 |
+
context_dim: int,
|
54 |
+
spatial_merge_size: int = 2,
|
55 |
+
pre_norm="layernorm",
|
56 |
+
init_merger_std=None,
|
57 |
+
) -> None:
|
58 |
+
super().__init__()
|
59 |
+
self.hidden_size = context_dim * (spatial_merge_size**2)
|
60 |
+
self.pre_norm = pre_norm
|
61 |
+
if self.pre_norm == "layernorm":
|
62 |
+
self.ln_q = LayerNorm(context_dim, eps=1e-6)
|
63 |
+
elif self.pre_norm == "rmsnorm":
|
64 |
+
self.ln_q = RMSNorm(context_dim, eps=1e-6)
|
65 |
+
else:
|
66 |
+
print("no norm in patch merger")
|
67 |
+
|
68 |
+
self.mlp = nn.Sequential(
|
69 |
+
nn.Linear(self.hidden_size, self.hidden_size),
|
70 |
+
nn.GELU(),
|
71 |
+
nn.Linear(self.hidden_size, dim),
|
72 |
+
)
|
73 |
+
|
74 |
+
if init_merger_std is not None:
|
75 |
+
nn.init.normal_(self.mlp[0].weight, mean=0.0, std=init_merger_std)
|
76 |
+
nn.init.zeros_(self.mlp[0].bias)
|
77 |
+
nn.init.normal_(self.mlp[2].weight, mean=0.0, std=init_merger_std)
|
78 |
+
nn.init.zeros_(self.mlp[2].bias)
|
79 |
+
|
80 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
81 |
+
if self.pre_norm:
|
82 |
+
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
|
83 |
+
else:
|
84 |
+
x = self.mlp(x.view(-1, self.hidden_size))
|
85 |
+
return x
|
86 |
+
|
87 |
+
|
88 |
+
class VisionAttention(nn.Module):
|
89 |
+
def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
|
90 |
+
super().__init__()
|
91 |
+
self.num_heads = num_heads
|
92 |
+
self.head_dim = dim // num_heads
|
93 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=bias)
|
94 |
+
self.proj = nn.Linear(dim, dim, bias=bias)
|
95 |
+
|
96 |
+
def forward(
|
97 |
+
self,
|
98 |
+
hidden_states: torch.Tensor,
|
99 |
+
cu_seqlens: torch.Tensor,
|
100 |
+
rotary_pos_emb: torch.Tensor = None,
|
101 |
+
) -> torch.Tensor:
|
102 |
+
seq_length = hidden_states.shape[0]
|
103 |
+
|
104 |
+
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
105 |
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
106 |
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
107 |
+
|
108 |
+
attention_mask = torch.full(
|
109 |
+
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
|
110 |
+
)
|
111 |
+
for i in range(1, len(cu_seqlens)):
|
112 |
+
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0
|
113 |
+
|
114 |
+
q = q.transpose(0, 1)
|
115 |
+
k = k.transpose(0, 1)
|
116 |
+
v = v.transpose(0, 1)
|
117 |
+
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
|
118 |
+
attn_weights = attn_weights + attention_mask
|
119 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
|
120 |
+
attn_output = torch.matmul(attn_weights, v)
|
121 |
+
attn_output = attn_output.transpose(0, 1)
|
122 |
+
attn_output = attn_output.reshape(seq_length, -1)
|
123 |
+
attn_output = self.proj(attn_output)
|
124 |
+
return attn_output
|
125 |
+
|
126 |
+
|
127 |
+
class VisionFlashAttention2(nn.Module):
|
128 |
+
def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
|
129 |
+
super().__init__()
|
130 |
+
self.num_heads = num_heads
|
131 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=bias)
|
132 |
+
self.proj = nn.Linear(dim, dim, bias=bias)
|
133 |
+
self.config = config
|
134 |
+
self.is_causal = config.is_causal
|
135 |
+
|
136 |
+
def forward(
|
137 |
+
self,
|
138 |
+
hidden_states: torch.Tensor,
|
139 |
+
cu_seqlens: torch.Tensor,
|
140 |
+
rotary_pos_emb: torch.Tensor = None,
|
141 |
+
) -> torch.Tensor:
|
142 |
+
seq_length = hidden_states.shape[0]
|
143 |
+
q, k, v = (
|
144 |
+
self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
145 |
+
) # 'shd'
|
146 |
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
147 |
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
148 |
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
149 |
+
attn_output = flash_attn_varlen_func(
|
150 |
+
q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen, causal=self.is_causal
|
151 |
+
).reshape(seq_length, -1)
|
152 |
+
attn_output = self.proj(attn_output)
|
153 |
+
|
154 |
+
return attn_output
|
155 |
+
|
156 |
+
|
157 |
+
class VisionSdpaAttention(nn.Module):
|
158 |
+
def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
|
159 |
+
super().__init__()
|
160 |
+
self.num_heads = num_heads
|
161 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=bias)
|
162 |
+
self.proj = nn.Linear(dim, dim, bias=bias)
|
163 |
+
self.config = config
|
164 |
+
|
165 |
+
def forward(
|
166 |
+
self,
|
167 |
+
hidden_states: torch.Tensor,
|
168 |
+
cu_seqlens: torch.Tensor,
|
169 |
+
rotary_pos_emb: torch.Tensor = None,
|
170 |
+
) -> torch.Tensor:
|
171 |
+
seq_length = hidden_states.shape[0]
|
172 |
+
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
173 |
+
|
174 |
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
175 |
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
176 |
+
|
177 |
+
attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
|
178 |
+
for i in range(1, len(cu_seqlens)):
|
179 |
+
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
|
180 |
+
|
181 |
+
q = q.transpose(0, 1)
|
182 |
+
k = k.transpose(0, 1)
|
183 |
+
v = v.transpose(0, 1)
|
184 |
+
|
185 |
+
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
|
186 |
+
attn_output = attn_output.transpose(0, 1)
|
187 |
+
attn_output = attn_output.reshape(seq_length, -1)
|
188 |
+
|
189 |
+
attn_output = self.proj(attn_output)
|
190 |
+
return attn_output
|
191 |
+
|
192 |
+
|
193 |
+
DOTS_VISION_ATTENTION_CLASSES = {
|
194 |
+
"eager": VisionAttention,
|
195 |
+
"flash_attention_2": VisionFlashAttention2,
|
196 |
+
"sdpa": VisionSdpaAttention,
|
197 |
+
}
|
198 |
+
|
199 |
+
|
200 |
+
class RMSNorm(nn.Module):
|
201 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
202 |
+
super().__init__()
|
203 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
204 |
+
self.eps = eps
|
205 |
+
|
206 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
207 |
+
output = self._norm(x.float()).type_as(x)
|
208 |
+
return output * self.weight
|
209 |
+
|
210 |
+
def extra_repr(self) -> str:
|
211 |
+
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
212 |
+
|
213 |
+
def _norm(self, x: torch.Tensor) -> torch.Tensor:
|
214 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
215 |
+
|
216 |
+
|
217 |
+
class DotsSwiGLUFFN(nn.Module):
|
218 |
+
def __init__(self, config):
|
219 |
+
super().__init__()
|
220 |
+
hidden_features = config.intermediate_size
|
221 |
+
in_features = config.embed_dim
|
222 |
+
bias = config.use_bias
|
223 |
+
|
224 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
225 |
+
self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
|
226 |
+
self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
|
227 |
+
|
228 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
229 |
+
x = F.silu(self.fc1(x)) * self.fc3(x)
|
230 |
+
x = self.fc2(x)
|
231 |
+
return x
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
class DotsPatchEmbed(nn.Module):
|
236 |
+
def __init__(self, config):
|
237 |
+
super().__init__()
|
238 |
+
self.num_channels = config.num_channels
|
239 |
+
self.patch_size = config.patch_size
|
240 |
+
self.temporal_patch_size = config.temporal_patch_size
|
241 |
+
self.embed_dim = config.embed_dim
|
242 |
+
self.config = config
|
243 |
+
self.proj = nn.Conv2d(
|
244 |
+
config.num_channels,
|
245 |
+
config.embed_dim,
|
246 |
+
kernel_size=(config.patch_size, config.patch_size),
|
247 |
+
stride=(config.patch_size, config.patch_size),
|
248 |
+
)
|
249 |
+
self.norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
|
250 |
+
|
251 |
+
def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
|
252 |
+
x = x.view(-1, self.num_channels, self.temporal_patch_size, self.patch_size, self.patch_size)[:, :, 0]
|
253 |
+
x = self.proj(x).view(-1, self.embed_dim)
|
254 |
+
x = self.norm(x)
|
255 |
+
return x
|
256 |
+
|
257 |
+
|
258 |
+
class DotsViTPreprocessor(nn.Module):
|
259 |
+
def __init__(self, config):
|
260 |
+
super().__init__()
|
261 |
+
self.patch_h = config.patch_size
|
262 |
+
self.patch_w = config.patch_size
|
263 |
+
self.embed_dim = config.embed_dim
|
264 |
+
self.config = config
|
265 |
+
self.patchifier = DotsPatchEmbed(config)
|
266 |
+
|
267 |
+
def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
|
268 |
+
tokens = self.patchifier(x, grid_thw)
|
269 |
+
return tokens
|
270 |
+
|
271 |
+
|
272 |
+
class DotsVisionBlock(nn.Module):
|
273 |
+
def __init__(self, config, attn_implementation: str = "flash_attention_2"):
|
274 |
+
super().__init__()
|
275 |
+
self.attn = DOTS_VISION_ATTENTION_CLASSES[attn_implementation](
|
276 |
+
config, config.embed_dim, num_heads=config.num_attention_heads, bias=config.use_bias
|
277 |
+
)
|
278 |
+
self.norm1 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
|
279 |
+
self.mlp = DotsSwiGLUFFN(config)
|
280 |
+
self.norm2 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
|
281 |
+
|
282 |
+
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
|
283 |
+
hidden_states = hidden_states + self.attn(
|
284 |
+
self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
|
285 |
+
)
|
286 |
+
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
287 |
+
return hidden_states
|
288 |
+
|
289 |
+
|
290 |
+
class DotsVisionTransformer(PreTrainedModel):
|
291 |
+
def __init__(self, config: DotsVisionConfig) -> None:
|
292 |
+
super().__init__(config)
|
293 |
+
self.config = config
|
294 |
+
self.spatial_merge_size = config.spatial_merge_size
|
295 |
+
|
296 |
+
self.patch_embed = DotsViTPreprocessor(config)
|
297 |
+
self._init_weights(self.patch_embed.patchifier.proj)
|
298 |
+
|
299 |
+
head_dim = config.embed_dim // config.num_attention_heads
|
300 |
+
|
301 |
+
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
|
302 |
+
|
303 |
+
_num_hidden_layers = config.num_hidden_layers
|
304 |
+
self.blocks = nn.ModuleList(
|
305 |
+
[DotsVisionBlock(config, config.attn_implementation) for _ in range(_num_hidden_layers)]
|
306 |
+
)
|
307 |
+
|
308 |
+
if self.config.post_norm:
|
309 |
+
self.post_trunk_norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
|
310 |
+
|
311 |
+
self.merger = PatchMerger(
|
312 |
+
dim=config.hidden_size,
|
313 |
+
context_dim=config.embed_dim,
|
314 |
+
spatial_merge_size=config.spatial_merge_size,
|
315 |
+
init_merger_std=self.config.init_merger_std,
|
316 |
+
)
|
317 |
+
|
318 |
+
self.gradient_checkpointing = False
|
319 |
+
self._gradient_checkpointing_func = torch.utils.checkpoint.checkpoint
|
320 |
+
|
321 |
+
def _init_weights(self, module):
|
322 |
+
std = self.config.initializer_range
|
323 |
+
if isinstance(module, (nn.Linear, nn.Conv3d)):
|
324 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
325 |
+
if module.bias is not None:
|
326 |
+
module.bias.data.zero_()
|
327 |
+
elif isinstance(module, nn.Embedding):
|
328 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
329 |
+
if module.padding_idx is not None:
|
330 |
+
module.weight.data[module.padding_idx].zero_()
|
331 |
+
|
332 |
+
@property
|
333 |
+
def dtype(self) -> torch.dtype:
|
334 |
+
return self.blocks[0].mlp.fc2.weight.dtype
|
335 |
+
|
336 |
+
@property
|
337 |
+
def device(self) -> torch.device:
|
338 |
+
return self.blocks[0].mlp.fc2.weight.device
|
339 |
+
|
340 |
+
def get_pos_ids_by_grid(self, grid_thw):
|
341 |
+
pos_ids = []
|
342 |
+
for t, h, w in grid_thw:
|
343 |
+
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
344 |
+
hpos_ids = hpos_ids.reshape(
|
345 |
+
h // self.spatial_merge_size,
|
346 |
+
self.spatial_merge_size,
|
347 |
+
w // self.spatial_merge_size,
|
348 |
+
self.spatial_merge_size,
|
349 |
+
)
|
350 |
+
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
351 |
+
hpos_ids = hpos_ids.flatten()
|
352 |
+
|
353 |
+
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
354 |
+
wpos_ids = wpos_ids.reshape(
|
355 |
+
h // self.spatial_merge_size,
|
356 |
+
self.spatial_merge_size,
|
357 |
+
w // self.spatial_merge_size,
|
358 |
+
self.spatial_merge_size,
|
359 |
+
)
|
360 |
+
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
361 |
+
wpos_ids = wpos_ids.flatten()
|
362 |
+
pos_ids.append(
|
363 |
+
torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)
|
364 |
+
)
|
365 |
+
|
366 |
+
return pos_ids
|
367 |
+
|
368 |
+
def rot_pos_emb(self, grid_thw):
|
369 |
+
pos_ids = self.get_pos_ids_by_grid(grid_thw)
|
370 |
+
pos_ids = torch.cat(pos_ids, dim=0)
|
371 |
+
max_grid_size = grid_thw[:, 1:].max()
|
372 |
+
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
373 |
+
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
374 |
+
return rotary_pos_emb
|
375 |
+
|
376 |
+
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, bf16=True) -> torch.Tensor:
|
377 |
+
if bf16:
|
378 |
+
hidden_states = hidden_states.bfloat16()
|
379 |
+
hidden_states = self.patch_embed(hidden_states, grid_thw)
|
380 |
+
|
381 |
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
382 |
+
|
383 |
+
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
|
384 |
+
dim=0,
|
385 |
+
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
|
386 |
+
)
|
387 |
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
388 |
+
|
389 |
+
for blk in self.blocks:
|
390 |
+
if self.gradient_checkpointing and self.training:
|
391 |
+
hidden_states = self._gradient_checkpointing_func(
|
392 |
+
blk.__call__,
|
393 |
+
hidden_states,
|
394 |
+
cu_seqlens,
|
395 |
+
rotary_pos_emb,
|
396 |
+
)
|
397 |
+
else:
|
398 |
+
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
|
399 |
+
|
400 |
+
if self.config.post_norm:
|
401 |
+
hidden_states = self.post_trunk_norm(hidden_states)
|
402 |
+
|
403 |
+
hidden_states = self.merger(hidden_states)
|
404 |
+
return hidden_states
|