NirajRajai commited on
Commit
2a4a7a9
·
verified ·
1 Parent(s): c54c359

Upload modeling_dots_ocr.py

Browse files
Files changed (1) hide show
  1. modeling_dots_ocr.py +131 -0
modeling_dots_ocr.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+
3
+ import torch
4
+ from transformers.modeling_outputs import CausalLMOutputWithPast
5
+ from transformers.models.qwen2 import Qwen2ForCausalLM
6
+
7
+ from .configuration_dots import DotsVisionConfig, DotsOCRConfig
8
+ from .modeling_dots_vision import DotsVisionTransformer
9
+
10
+
11
+ DOTS_VLM_MAX_IMAGES = 200
12
+
13
+
14
+ class DotsOCRForCausalLM(Qwen2ForCausalLM):
15
+ config_class = DotsOCRConfig
16
+
17
+ def __init__(self, config: DotsOCRConfig):
18
+ super().__init__(config)
19
+
20
+ if isinstance(self.config.vision_config, dict):
21
+ vision_config = DotsVisionConfig(**self.config.vision_config)
22
+ self.config.vision_config = vision_config
23
+ else:
24
+ vision_config = self.config.vision_config
25
+
26
+ self.vision_tower = DotsVisionTransformer(vision_config)
27
+
28
+ def prepare_inputs_embeds(
29
+ self,
30
+ input_ids: torch.LongTensor,
31
+ pixel_values: Optional[torch.FloatTensor] = None,
32
+ grid_thw: Optional[torch.FloatTensor] = None,
33
+ img_mask: Optional[torch.BoolTensor] = None,
34
+ ) -> torch.Tensor:
35
+ inputs_embeds = self.get_input_embeddings()(input_ids)
36
+
37
+ if pixel_values is not None:
38
+ assert img_mask is not None
39
+ if grid_thw.shape[0] > DOTS_VLM_MAX_IMAGES:
40
+ print(
41
+ f"Num image exceeded: {grid_thw.shape[0]} > {DOTS_VLM_MAX_IMAGES}, which may cause FSDP hang"
42
+ )
43
+
44
+ vision_embeddings = self.vision_tower(pixel_values, grid_thw)
45
+
46
+ true_indices = torch.nonzero(img_mask).squeeze()
47
+ if len(true_indices) > vision_embeddings.size(0):
48
+ print(
49
+ f"img_mask sum > VE and will be truncated, mask.sum()={len(true_indices)} {vision_embeddings.size(0)=}"
50
+ )
51
+ true_indices = true_indices[: vision_embeddings.size(0)]
52
+ new_img_mask = torch.zeros_like(img_mask, device=img_mask.device)
53
+ new_img_mask[true_indices[:, 0], true_indices[:, 1]] = True
54
+ else:
55
+ new_img_mask = img_mask
56
+
57
+ assert (
58
+ vision_embeddings.size(0) == new_img_mask.sum()
59
+ ), f"{vision_embeddings.size(0)=}, {new_img_mask.sum()=}"
60
+
61
+ inputs_embeds = inputs_embeds.masked_scatter(
62
+ new_img_mask.to(inputs_embeds.device).unsqueeze(-1).expand_as(inputs_embeds),
63
+ vision_embeddings.to(inputs_embeds.device).type(inputs_embeds.dtype),
64
+ )
65
+
66
+ return inputs_embeds
67
+
68
+ def forward(
69
+ self,
70
+ input_ids: torch.LongTensor,
71
+ pixel_values: Optional[torch.FloatTensor] = None,
72
+ image_grid_thw: Optional[torch.FloatTensor] = None,
73
+ inputs_embeds: Optional[torch.Tensor] = None,
74
+ attention_mask: Optional[torch.Tensor] = None,
75
+ position_ids: Optional[torch.LongTensor] = None,
76
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
77
+ labels: Optional[torch.LongTensor] = None,
78
+ output_attentions: Optional[bool] = None,
79
+ output_hidden_states: Optional[bool] = None,
80
+ return_dict: Optional[bool] = None,
81
+ use_cache: Optional[bool] = None,
82
+ logits_to_keep: int = 0,
83
+ **loss_kwargs,
84
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
85
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
86
+ assert len(input_ids) >= 1, f"empty input_ids {input_ids.shape=} will cause gradnorm nan"
87
+ if inputs_embeds is None:
88
+ img_mask = input_ids == self.config.image_token_id
89
+ inputs_embeds = self.prepare_inputs_embeds(input_ids, pixel_values, image_grid_thw, img_mask)
90
+
91
+ outputs = super().forward(
92
+ inputs_embeds=inputs_embeds,
93
+ attention_mask=attention_mask,
94
+ position_ids=position_ids,
95
+ past_key_values=past_key_values,
96
+ labels=labels,
97
+ use_cache=use_cache if use_cache is not None else self.config.use_cache,
98
+ output_attentions=output_attentions,
99
+ output_hidden_states=output_hidden_states,
100
+ # return_dict=return_dict,
101
+ logits_to_keep=logits_to_keep,
102
+ **loss_kwargs,
103
+ )
104
+
105
+ return outputs
106
+
107
+ def prepare_inputs_for_generation(
108
+ self,
109
+ input_ids,
110
+ past_key_values=None,
111
+ inputs_embeds=None,
112
+ pixel_values=None,
113
+ attention_mask=None,
114
+ cache_position=None,
115
+ num_logits_to_keep=None,
116
+ **kwargs,
117
+ ):
118
+ model_inputs = super().prepare_inputs_for_generation(
119
+ input_ids,
120
+ past_key_values=past_key_values,
121
+ inputs_embeds=inputs_embeds,
122
+ attention_mask=attention_mask,
123
+ cache_position=cache_position,
124
+ num_logits_to_keep=num_logits_to_keep,
125
+ **kwargs,
126
+ )
127
+
128
+ if cache_position[0] == 0:
129
+ model_inputs["pixel_values"] = pixel_values
130
+
131
+ return model_inputs