Upload modeling_dots_ocr.py
Browse files- modeling_dots_ocr.py +131 -0
modeling_dots_ocr.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
5 |
+
from transformers.models.qwen2 import Qwen2ForCausalLM
|
6 |
+
|
7 |
+
from .configuration_dots import DotsVisionConfig, DotsOCRConfig
|
8 |
+
from .modeling_dots_vision import DotsVisionTransformer
|
9 |
+
|
10 |
+
|
11 |
+
DOTS_VLM_MAX_IMAGES = 200
|
12 |
+
|
13 |
+
|
14 |
+
class DotsOCRForCausalLM(Qwen2ForCausalLM):
|
15 |
+
config_class = DotsOCRConfig
|
16 |
+
|
17 |
+
def __init__(self, config: DotsOCRConfig):
|
18 |
+
super().__init__(config)
|
19 |
+
|
20 |
+
if isinstance(self.config.vision_config, dict):
|
21 |
+
vision_config = DotsVisionConfig(**self.config.vision_config)
|
22 |
+
self.config.vision_config = vision_config
|
23 |
+
else:
|
24 |
+
vision_config = self.config.vision_config
|
25 |
+
|
26 |
+
self.vision_tower = DotsVisionTransformer(vision_config)
|
27 |
+
|
28 |
+
def prepare_inputs_embeds(
|
29 |
+
self,
|
30 |
+
input_ids: torch.LongTensor,
|
31 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
32 |
+
grid_thw: Optional[torch.FloatTensor] = None,
|
33 |
+
img_mask: Optional[torch.BoolTensor] = None,
|
34 |
+
) -> torch.Tensor:
|
35 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
36 |
+
|
37 |
+
if pixel_values is not None:
|
38 |
+
assert img_mask is not None
|
39 |
+
if grid_thw.shape[0] > DOTS_VLM_MAX_IMAGES:
|
40 |
+
print(
|
41 |
+
f"Num image exceeded: {grid_thw.shape[0]} > {DOTS_VLM_MAX_IMAGES}, which may cause FSDP hang"
|
42 |
+
)
|
43 |
+
|
44 |
+
vision_embeddings = self.vision_tower(pixel_values, grid_thw)
|
45 |
+
|
46 |
+
true_indices = torch.nonzero(img_mask).squeeze()
|
47 |
+
if len(true_indices) > vision_embeddings.size(0):
|
48 |
+
print(
|
49 |
+
f"img_mask sum > VE and will be truncated, mask.sum()={len(true_indices)} {vision_embeddings.size(0)=}"
|
50 |
+
)
|
51 |
+
true_indices = true_indices[: vision_embeddings.size(0)]
|
52 |
+
new_img_mask = torch.zeros_like(img_mask, device=img_mask.device)
|
53 |
+
new_img_mask[true_indices[:, 0], true_indices[:, 1]] = True
|
54 |
+
else:
|
55 |
+
new_img_mask = img_mask
|
56 |
+
|
57 |
+
assert (
|
58 |
+
vision_embeddings.size(0) == new_img_mask.sum()
|
59 |
+
), f"{vision_embeddings.size(0)=}, {new_img_mask.sum()=}"
|
60 |
+
|
61 |
+
inputs_embeds = inputs_embeds.masked_scatter(
|
62 |
+
new_img_mask.to(inputs_embeds.device).unsqueeze(-1).expand_as(inputs_embeds),
|
63 |
+
vision_embeddings.to(inputs_embeds.device).type(inputs_embeds.dtype),
|
64 |
+
)
|
65 |
+
|
66 |
+
return inputs_embeds
|
67 |
+
|
68 |
+
def forward(
|
69 |
+
self,
|
70 |
+
input_ids: torch.LongTensor,
|
71 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
72 |
+
image_grid_thw: Optional[torch.FloatTensor] = None,
|
73 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
74 |
+
attention_mask: Optional[torch.Tensor] = None,
|
75 |
+
position_ids: Optional[torch.LongTensor] = None,
|
76 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
77 |
+
labels: Optional[torch.LongTensor] = None,
|
78 |
+
output_attentions: Optional[bool] = None,
|
79 |
+
output_hidden_states: Optional[bool] = None,
|
80 |
+
return_dict: Optional[bool] = None,
|
81 |
+
use_cache: Optional[bool] = None,
|
82 |
+
logits_to_keep: int = 0,
|
83 |
+
**loss_kwargs,
|
84 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
85 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
86 |
+
assert len(input_ids) >= 1, f"empty input_ids {input_ids.shape=} will cause gradnorm nan"
|
87 |
+
if inputs_embeds is None:
|
88 |
+
img_mask = input_ids == self.config.image_token_id
|
89 |
+
inputs_embeds = self.prepare_inputs_embeds(input_ids, pixel_values, image_grid_thw, img_mask)
|
90 |
+
|
91 |
+
outputs = super().forward(
|
92 |
+
inputs_embeds=inputs_embeds,
|
93 |
+
attention_mask=attention_mask,
|
94 |
+
position_ids=position_ids,
|
95 |
+
past_key_values=past_key_values,
|
96 |
+
labels=labels,
|
97 |
+
use_cache=use_cache if use_cache is not None else self.config.use_cache,
|
98 |
+
output_attentions=output_attentions,
|
99 |
+
output_hidden_states=output_hidden_states,
|
100 |
+
# return_dict=return_dict,
|
101 |
+
logits_to_keep=logits_to_keep,
|
102 |
+
**loss_kwargs,
|
103 |
+
)
|
104 |
+
|
105 |
+
return outputs
|
106 |
+
|
107 |
+
def prepare_inputs_for_generation(
|
108 |
+
self,
|
109 |
+
input_ids,
|
110 |
+
past_key_values=None,
|
111 |
+
inputs_embeds=None,
|
112 |
+
pixel_values=None,
|
113 |
+
attention_mask=None,
|
114 |
+
cache_position=None,
|
115 |
+
num_logits_to_keep=None,
|
116 |
+
**kwargs,
|
117 |
+
):
|
118 |
+
model_inputs = super().prepare_inputs_for_generation(
|
119 |
+
input_ids,
|
120 |
+
past_key_values=past_key_values,
|
121 |
+
inputs_embeds=inputs_embeds,
|
122 |
+
attention_mask=attention_mask,
|
123 |
+
cache_position=cache_position,
|
124 |
+
num_logits_to_keep=num_logits_to_keep,
|
125 |
+
**kwargs,
|
126 |
+
)
|
127 |
+
|
128 |
+
if cache_position[0] == 0:
|
129 |
+
model_inputs["pixel_values"] = pixel_values
|
130 |
+
|
131 |
+
return model_inputs
|