BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("NickyNicky/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Our Records Management and Data Management service revenue growth is being negatively impacted by declining activity rates as stored records and tapes are becoming less active and more archival.',
'How is Iron Mountain addressing the decline in activity rates in their Records and Data Management services?',
'What services do companies that build fiber-based networks provide in the Connectivity & Platforms markets?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7057 |
cosine_accuracy@3 | 0.8457 |
cosine_accuracy@5 | 0.8786 |
cosine_accuracy@10 | 0.9114 |
cosine_precision@1 | 0.7057 |
cosine_precision@3 | 0.2819 |
cosine_precision@5 | 0.1757 |
cosine_precision@10 | 0.0911 |
cosine_recall@1 | 0.7057 |
cosine_recall@3 | 0.8457 |
cosine_recall@5 | 0.8786 |
cosine_recall@10 | 0.9114 |
cosine_ndcg@10 | 0.8125 |
cosine_mrr@10 | 0.7804 |
cosine_map@100 | 0.7839 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7071 |
cosine_accuracy@3 | 0.8429 |
cosine_accuracy@5 | 0.8743 |
cosine_accuracy@10 | 0.9114 |
cosine_precision@1 | 0.7071 |
cosine_precision@3 | 0.281 |
cosine_precision@5 | 0.1749 |
cosine_precision@10 | 0.0911 |
cosine_recall@1 | 0.7071 |
cosine_recall@3 | 0.8429 |
cosine_recall@5 | 0.8743 |
cosine_recall@10 | 0.9114 |
cosine_ndcg@10 | 0.8127 |
cosine_mrr@10 | 0.7807 |
cosine_map@100 | 0.7841 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7029 |
cosine_accuracy@3 | 0.8357 |
cosine_accuracy@5 | 0.8686 |
cosine_accuracy@10 | 0.9071 |
cosine_precision@1 | 0.7029 |
cosine_precision@3 | 0.2786 |
cosine_precision@5 | 0.1737 |
cosine_precision@10 | 0.0907 |
cosine_recall@1 | 0.7029 |
cosine_recall@3 | 0.8357 |
cosine_recall@5 | 0.8686 |
cosine_recall@10 | 0.9071 |
cosine_ndcg@10 | 0.8087 |
cosine_mrr@10 | 0.7769 |
cosine_map@100 | 0.7806 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6914 |
cosine_accuracy@3 | 0.82 |
cosine_accuracy@5 | 0.8557 |
cosine_accuracy@10 | 0.9014 |
cosine_precision@1 | 0.6914 |
cosine_precision@3 | 0.2733 |
cosine_precision@5 | 0.1711 |
cosine_precision@10 | 0.0901 |
cosine_recall@1 | 0.6914 |
cosine_recall@3 | 0.82 |
cosine_recall@5 | 0.8557 |
cosine_recall@10 | 0.9014 |
cosine_ndcg@10 | 0.7981 |
cosine_mrr@10 | 0.765 |
cosine_map@100 | 0.7689 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6543 |
cosine_accuracy@3 | 0.7886 |
cosine_accuracy@5 | 0.8329 |
cosine_accuracy@10 | 0.8829 |
cosine_precision@1 | 0.6543 |
cosine_precision@3 | 0.2629 |
cosine_precision@5 | 0.1666 |
cosine_precision@10 | 0.0883 |
cosine_recall@1 | 0.6543 |
cosine_recall@3 | 0.7886 |
cosine_recall@5 | 0.8329 |
cosine_recall@10 | 0.8829 |
cosine_ndcg@10 | 0.769 |
cosine_mrr@10 | 0.7325 |
cosine_map@100 | 0.7369 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 10 tokens
- mean: 46.55 tokens
- max: 512 tokens
- min: 7 tokens
- mean: 20.56 tokens
- max: 42 tokens
- Samples:
positive anchor Internationally, Visa Inc.'s commercial payments volume grew by 23% from $407 billion in 2021 to $500 billion in 2022.
What was the growth rate of Visa Inc.'s commercial payments volume internationally between 2021 and 2022?
The consolidated financial statements and accompanying notes listed in Part IV, Item 15(a)(1) of this Annual Report on Form 10-K are included immediately following Part IV hereof.
Where can one find the consolidated financial statements and accompanying notes in the Annual Report on Form 10-K?
The additional paid-in capital at the end of 2023 was recorded as $114,519 million.
What was the amount recorded for additional paid-in capital at the end of 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 80per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 15lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 80per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 15max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8101 | 4 | - | 0.7066 | 0.7309 | 0.7390 | 0.6462 | 0.7441 |
1.8228 | 9 | - | 0.7394 | 0.7497 | 0.7630 | 0.6922 | 0.7650 |
2.0253 | 10 | 2.768 | - | - | - | - | - |
2.8354 | 14 | - | 0.7502 | 0.7625 | 0.7767 | 0.7208 | 0.7787 |
3.8481 | 19 | - | 0.7553 | 0.7714 | 0.7804 | 0.7234 | 0.7802 |
4.0506 | 20 | 1.1294 | - | - | - | - | - |
4.8608 | 24 | - | 0.7577 | 0.7769 | 0.7831 | 0.7327 | 0.7858 |
5.8734 | 29 | - | 0.7616 | 0.7775 | 0.7832 | 0.7335 | 0.7876 |
6.0759 | 30 | 0.7536 | - | - | - | - | - |
6.8861 | 34 | - | 0.7624 | 0.7788 | 0.7832 | 0.7352 | 0.7882 |
7.8987 | 39 | - | 0.7665 | 0.7795 | 0.7814 | 0.7359 | 0.7861 |
8.1013 | 40 | 0.5846 | - | - | - | - | - |
8.9114 | 44 | - | 0.7688 | 0.7801 | 0.7828 | 0.7360 | 0.7857 |
9.9241 | 49 | - | 0.7698 | 0.7804 | 0.7836 | 0.7367 | 0.7840 |
10.1266 | 50 | 0.5187 | - | - | - | - | - |
10.9367 | 54 | - | 0.7692 | 0.7801 | 0.7827 | 0.7383 | 0.7837 |
11.9494 | 59 | - | 0.7698 | 0.7801 | 0.7834 | 0.7377 | 0.7849 |
12.1519 | 60 | 0.4949 | 0.7689 | 0.7806 | 0.7841 | 0.7369 | 0.7839 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for NickyNicky/bge-base-financial-matryoshka_test_4
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.706
- Cosine Accuracy@3 on dim 768self-reported0.846
- Cosine Accuracy@5 on dim 768self-reported0.879
- Cosine Accuracy@10 on dim 768self-reported0.911
- Cosine Precision@1 on dim 768self-reported0.706
- Cosine Precision@3 on dim 768self-reported0.282
- Cosine Precision@5 on dim 768self-reported0.176
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.706
- Cosine Recall@3 on dim 768self-reported0.846