|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
import torch
|
|
|
|
class ModelHandler:
|
|
def __init__(self):
|
|
self.initialized = False
|
|
|
|
def initialize(self, model_dir: str):
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
|
self.model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
|
|
self.model.eval()
|
|
if torch.cuda.is_available():
|
|
self.model.to("cuda")
|
|
self.initialized = True
|
|
|
|
def predict(self, inputs: dict):
|
|
if not self.initialized:
|
|
raise RuntimeError("Model not initialized")
|
|
|
|
messages = inputs.get("messages", [])
|
|
max_tokens = inputs.get("max_tokens", 512)
|
|
temperature = inputs.get("temperature", 0.7)
|
|
|
|
|
|
prompt = self._build_prompt(messages)
|
|
|
|
|
|
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
|
|
if torch.cuda.is_available():
|
|
input_ids = input_ids.to("cuda")
|
|
|
|
|
|
output_ids = self.model.generate(
|
|
input_ids,
|
|
max_new_tokens=max_tokens,
|
|
temperature=temperature,
|
|
do_sample=True,
|
|
pad_token_id=self.tokenizer.eos_token_id,
|
|
)
|
|
|
|
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
|
|
|
generated_text = response[len(prompt):].strip()
|
|
|
|
return {
|
|
"id": "chatcmpl-fakeid",
|
|
"object": "chat.completion",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"message": {
|
|
"role": "assistant",
|
|
"content": generated_text
|
|
},
|
|
"finish_reason": "stop"
|
|
}
|
|
],
|
|
"model": "your-model-id",
|
|
}
|
|
|
|
def _build_prompt(self, messages):
|
|
prompt = ""
|
|
for msg in messages:
|
|
role = msg["role"]
|
|
content = msg["content"]
|
|
if role == "user":
|
|
prompt += f"User: {content}\n"
|
|
elif role == "assistant":
|
|
prompt += f"Assistant: {content}\n"
|
|
prompt += "Assistant:"
|
|
return prompt
|
|
|