Upload handler.py
Browse filesThis is the handler.py file
- handler.py +72 -0
handler.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import torch
|
3 |
+
|
4 |
+
class ModelHandler:
|
5 |
+
def __init__(self):
|
6 |
+
self.initialized = False
|
7 |
+
|
8 |
+
def initialize(self, model_dir: str):
|
9 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
10 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
|
11 |
+
self.model.eval()
|
12 |
+
if torch.cuda.is_available():
|
13 |
+
self.model.to("cuda")
|
14 |
+
self.initialized = True
|
15 |
+
|
16 |
+
def predict(self, inputs: dict):
|
17 |
+
if not self.initialized:
|
18 |
+
raise RuntimeError("Model not initialized")
|
19 |
+
|
20 |
+
messages = inputs.get("messages", [])
|
21 |
+
max_tokens = inputs.get("max_tokens", 512)
|
22 |
+
temperature = inputs.get("temperature", 0.7)
|
23 |
+
|
24 |
+
# Convert OpenAI-style messages into a single prompt
|
25 |
+
prompt = self._build_prompt(messages)
|
26 |
+
|
27 |
+
# Tokenize
|
28 |
+
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
|
29 |
+
if torch.cuda.is_available():
|
30 |
+
input_ids = input_ids.to("cuda")
|
31 |
+
|
32 |
+
# Generate
|
33 |
+
output_ids = self.model.generate(
|
34 |
+
input_ids,
|
35 |
+
max_new_tokens=max_tokens,
|
36 |
+
temperature=temperature,
|
37 |
+
do_sample=True,
|
38 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
39 |
+
)
|
40 |
+
|
41 |
+
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
42 |
+
|
43 |
+
# Return just the newly generated portion
|
44 |
+
generated_text = response[len(prompt):].strip()
|
45 |
+
|
46 |
+
return {
|
47 |
+
"id": "chatcmpl-fakeid",
|
48 |
+
"object": "chat.completion",
|
49 |
+
"choices": [
|
50 |
+
{
|
51 |
+
"index": 0,
|
52 |
+
"message": {
|
53 |
+
"role": "assistant",
|
54 |
+
"content": generated_text
|
55 |
+
},
|
56 |
+
"finish_reason": "stop"
|
57 |
+
}
|
58 |
+
],
|
59 |
+
"model": "your-model-id",
|
60 |
+
}
|
61 |
+
|
62 |
+
def _build_prompt(self, messages):
|
63 |
+
prompt = ""
|
64 |
+
for msg in messages:
|
65 |
+
role = msg["role"]
|
66 |
+
content = msg["content"]
|
67 |
+
if role == "user":
|
68 |
+
prompt += f"User: {content}\n"
|
69 |
+
elif role == "assistant":
|
70 |
+
prompt += f"Assistant: {content}\n"
|
71 |
+
prompt += "Assistant:"
|
72 |
+
return prompt
|