Quantized Octopus V2: On-device language model for super agent
This repo includes two types of quantized models: GGUF and AWQ, for our Octopus V2 model at NexaAIDev/Octopus-v2
GGUF Qauntization
To run the models, please download them to your local machine using either git clone or Hugging Face Hub
git clone https://huggingface.co/NexaAIDev/Octopus-v2-gguf-awq
Run with llama.cpp (Recommended)
- Clone and compile:
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
# Compile the source code:
make
- Execute the Model:
Run the following command in the terminal:
./main -m ./path/to/octopus-v2-Q4_K_M.gguf -n 256 -p "Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: Take a selfie for me with front camera\n\nResponse:"
Run with Ollama
Since our models have not been uploaded to the Ollama server, please download the models and manually import them into Ollama by following these steps:
- Install Ollama on your local machine. You can also following the guide from Ollama GitHub repository
git clone https://github.com/ollama/ollama.git ollama
- Locate the local Ollama directory:
cd ollama
- Create a
Modelfile
in your directory
touch Modelfile
- In the Modelfile, include a
FROM
statement with the path to your local model, and the default parameters:
FROM ./path/to/octopus-v2-Q4_K_M.gguf
- Use the following command to add the model to Ollama:
ollama create octopus-v2-Q4_K_M -f Modelfile
- Verify that the model has been successfully imported:
ollama ls
- Run the mode
ollama run octopus-v2-Q4_K_M "Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: Take a selfie for me with front camera\n\nResponse:"
AWQ Quantization
Python example:
from transformers import AutoTokenizer
from awq import AutoAWQForCausalLM
import torch
import time
import numpy as np
def inference(input_text):
start_time = time.time()
input_ids = tokenizer(input_text, return_tensors="pt").to('cuda')
input_length = input_ids["input_ids"].shape[1]
generation_output = model.generate(
input_ids["input_ids"],
do_sample=False,
max_length=1024
)
end_time = time.time()
# Decode only the generated part
generated_sequence = generation_output[:, input_length:].tolist()
res = tokenizer.decode(generated_sequence[0])
latency = end_time - start_time
num_output_tokens = len(generated_sequence[0])
throughput = num_output_tokens / latency
return {"output": res, "latency": latency, "throughput": throughput}
# Initialize tokenizer and model
model_id = "/path/to/Octopus-v2-AWQ-NexaAIDev"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=False)
model = AutoAWQForCausalLM.from_quantized(model_id, fuse_layers=True,
trust_remote_code=False, safetensors=True)
prompts = ["Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: Can you take a photo using the back camera and save it to the default location? \n\nResponse:"]
avg_throughput = []
for prompt in prompts:
out = inference(prompt)
avg_throughput.append(out["throughput"])
print("nexa model result:\n", out["output"])
print("avg throughput:", np.mean(avg_throughput))
Quantized GGUF & AWQ Models Benchmark
Name | Quant method | Bits | Size | Response (t/s) | Use Cases |
---|---|---|---|---|---|
Octopus-v2-AWQ | AWQ | 4 | 3.00 GB | 63.83 | fast, high quality, recommended |
Octopus-v2-Q2_K.gguf | Q2_K | 2 | 1.16 GB | 57.81 | fast but high loss, not recommended |
Octopus-v2-Q3_K.gguf | Q3_K | 3 | 1.38 GB | 57.81 | extremely not recommended |
Octopus-v2-Q3_K_S.gguf | Q3_K_S | 3 | 1.19 GB | 52.13 | extremely not recommended |
Octopus-v2-Q3_K_M.gguf | Q3_K_M | 3 | 1.38 GB | 58.67 | moderate loss, not very recommended |
Octopus-v2-Q3_K_L.gguf | Q3_K_L | 3 | 1.47 GB | 56.92 | not very recommended |
Octopus-v2-Q4_0.gguf | Q4_0 | 4 | 1.55 GB | 68.80 | moderate speed, recommended |
Octopus-v2-Q4_1.gguf | Q4_1 | 4 | 1.68 GB | 68.09 | moderate speed, recommended |
Octopus-v2-Q4_K.gguf | Q4_K | 4 | 1.63 GB | 64.70 | moderate speed, recommended |
Octopus-v2-Q4_K_S.gguf | Q4_K_S | 4 | 1.56 GB | 62.16 | fast and accurate, very recommended |
Octopus-v2-Q4_K_M.gguf | Q4_K_M | 4 | 1.63 GB | 64.74 | fast, recommended |
Octopus-v2-Q5_0.gguf | Q5_0 | 5 | 1.80 GB | 64.80 | fast, recommended |
Octopus-v2-Q5_1.gguf | Q5_1 | 5 | 1.92 GB | 63.42 | very big, prefer Q4 |
Octopus-v2-Q5_K.gguf | Q5_K | 5 | 1.84 GB | 61.28 | big, recommended |
Octopus-v2-Q5_K_S.gguf | Q5_K_S | 5 | 1.80 GB | 62.16 | big, recommended |
Octopus-v2-Q5_K_M.gguf | Q5_K_M | 5 | 1.71 GB | 61.54 | big, recommended |
Octopus-v2-Q6_K.gguf | Q6_K | 6 | 2.06 GB | 55.94 | very big, not very recommended |
Octopus-v2-Q8_0.gguf | Q8_0 | 8 | 2.67 GB | 56.35 | very big, not very recommended |
Octopus-v2-f16.gguf | f16 | 16 | 5.02 GB | 36.27 | extremely big |
Octopus-v2.gguf | 10.00 GB |
Quantized with llama.cpp
Acknowledgement:
We sincerely thank our community members, Mingyuan, Zoey, Brian, Perry, Qi, David for their extraordinary contributions to this quantization effort.
- Downloads last month
- 1,407
Model tree for NexaAIDev/Octopus-v2-gguf-awq
Base model
google/gemma-2b