NexaAI/gemma-3n-E4B-it-4bit-MLX
Quickstart
Run them directly with nexa-sdk installed In nexa-sdk CLI:
NexaAI/gemma-3n-E4B-it-4bit-MLX
Overview
Summary description and brief definition of inputs and outputs.
Description
Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. Gemma 3n models are designed for efficient execution on low-resource devices. They are capable of multimodal input, handling text, image, video, and audio input, and generating text outputs, with open weights for pre-trained and instruction-tuned variants. These models were trained with data in over 140 spoken languages.
Gemma 3n models use selective parameter activation technology to reduce resource requirements. This technique allows the models to operate at an effective size of 2B and 4B parameters, which is lower than the total number of parameters they contain. For more information on Gemma 3n's efficient parameter management technology, see the Gemma 3n page.
Inputs and outputs
- Input:
- Text string, such as a question, a prompt, or a document to be summarized
- Images, normalized to 256x256, 512x512, or 768x768 resolution and encoded to 256 tokens each
- Audio data encoded to 6.25 tokens per second from a single channel
- Total input context of 32K tokens
- Output:
- Generated text in response to the input, such as an answer to a question, analysis of image content, or a summary of a document
- Total output length up to 32K tokens, subtracting the request input tokens
Benchmark Results
These models were evaluated at full precision (float32) against a large collection of different datasets and metrics to cover different aspects of content generation. Evaluation results marked with IT are for instruction-tuned models. Evaluation results marked with PT are for pre-trained models.
Reasoning and factuality
Benchmark | Metric | n-shot | E2B PT | E4B PT |
---|---|---|---|---|
HellaSwag | Accuracy | 10-shot | 72.2 | 78.6 |
BoolQ | Accuracy | 0-shot | 76.4 | 81.6 |
PIQA | Accuracy | 0-shot | 78.9 | 81.0 |
SocialIQA | Accuracy | 0-shot | 48.8 | 50.0 |
TriviaQA | Accuracy | 5-shot | 60.8 | 70.2 |
Natural Questions | Accuracy | 5-shot | 15.5 | 20.9 |
ARC-c | Accuracy | 25-shot | 51.7 | 61.6 |
ARC-e | Accuracy | 0-shot | 75.8 | 81.6 |
WinoGrande | Accuracy | 5-shot | 66.8 | 71.7 |
BIG-Bench Hard | Accuracy | few-shot | 44.3 | 52.9 |
DROP | Token F1 score | 1-shot | 53.9 | 60.8 |
Multilingual
Benchmark | Metric | n-shot | E2B IT | E4B IT |
---|---|---|---|---|
MGSM | Accuracy | 0-shot | 53.1 | 60.7 |
WMT24++ (ChrF) | Character-level F-score | 0-shot | 42.7 | 50.1 |
Include | Accuracy | 0-shot | 38.6 | 57.2 |
MMLU (ProX) | Accuracy | 0-shot | 8.1 | 19.9 |
OpenAI MMLU | Accuracy | 0-shot | 22.3 | 35.6 |
Global-MMLU | Accuracy | 0-shot | 55.1 | 60.3 |
ECLeKTic | ECLeKTic score | 0-shot | 2.5 | 1.9 |
STEM and code
Benchmark | Metric | n-shot | E2B IT | E4B IT |
---|---|---|---|---|
GPQA Diamond | RelaxedAccuracy/accuracy | 0-shot | 24.8 | 23.7 |
LiveCodeBench v5 | pass@1 | 0-shot | 18.6 | 25.7 |
Codegolf v2.2 | pass@1 | 0-shot | 11.0 | 16.8 |
AIME 2025 | Accuracy | 0-shot | 6.7 | 11.6 |
Additional benchmarks
Benchmark | Metric | n-shot | E2B IT | E4B IT |
---|---|---|---|---|
MMLU | Accuracy | 0-shot | 60.1 | 64.9 |
MBPP | pass@1 | 3-shot | 56.6 | 63.6 |
HumanEval | pass@1 | 0-shot | 66.5 | 75.0 |
LiveCodeBench | pass@1 | 0-shot | 13.2 | 13.2 |
HiddenMath | Accuracy | 0-shot | 27.7 | 37.7 |
Global-MMLU-Lite | Accuracy | 0-shot | 59.0 | 64.5 |
MMLU (Pro) | Accuracy | 0-shot | 40.5 | 50.6 |
Reference
Original model card: google/gemma-3n-E4B-it
- Downloads last month
- 128
Model tree for NexaAI/gemma-3n-E4B-it-4bit-MLX
Base model
google/gemma-3n-E4B