NexaAI/gemma-3-4b-it-8bit-MLX

Quickstart

Run them directly with nexa-sdk installed In nexa-sdk CLI:

NexaAI/gemma-3-4b-it-8bit-MLX

Overview

Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. Gemma 3 models are multimodal, handling text and image input and generating text output, with open weights for both pre-trained variants and instruction-tuned variants. Gemma 3 has a large, 128K context window, multilingual support in over 140 languages, and is available in more sizes than previous versions. Gemma 3 models are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as laptops, desktops or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone.

Inputs and outputs

  • Input:
    • Text string, such as a question, a prompt, or a document to be summarized
    • Images, normalized to 896 x 896 resolution and encoded to 256 tokens each
    • Total input context of 128K tokens for the 4B, 12B, and 27B sizes, and 32K tokens for the 1B size
  • Output:
    • Generated text in response to the input, such as an answer to a question, analysis of image content, or a summary of a document
    • Total output context of 8192 tokens

Benchmark Results

These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation:

Reasoning and factuality

Benchmark Metric Gemma 3 PT 1B Gemma 3 PT 4B Gemma 3 PT 12B Gemma 3 PT 27B
HellaSwag 10-shot 62.3 77.2 84.2 85.6
BoolQ 0-shot 63.2 72.3 78.8 82.4
PIQA 0-shot 73.8 79.6 81.8 83.3
SocialIQA 0-shot 48.9 51.9 53.4 54.9
TriviaQA 5-shot 39.8 65.8 78.2 85.5
Natural Questions 5-shot 9.48 20.0 31.4 36.1
ARC-c 25-shot 38.4 56.2 68.9 70.6
ARC-e 0-shot 73.0 82.4 88.3 89.0
WinoGrande 5-shot 58.2 64.7 74.3 78.8
BIG-Bench Hard few-shot 28.4 50.9 72.6 77.7
DROP 1-shot 42.4 60.1 72.2 77.2

STEM and code

Benchmark Metric Gemma 3 PT 4B Gemma 3 PT 12B Gemma 3 PT 27B
MMLU 5-shot 59.6 74.5 78.6
MMLU (Pro COT) 5-shot 29.2 45.3 52.2
AGIEval 3-5-shot 42.1 57.4 66.2
MATH 4-shot 24.2 43.3 50.0
GSM8K 8-shot 38.4 71.0 82.6
GPQA 5-shot 15.0 25.4 24.3
MBPP 3-shot 46.0 60.4 65.6
HumanEval 0-shot 36.0 45.7 48.8

Multilingual

Benchmark Gemma 3 PT 1B Gemma 3 PT 4B Gemma 3 PT 12B Gemma 3 PT 27B
MGSM 2.04 34.7 64.3 74.3
Global-MMLU-Lite 24.9 57.0 69.4 75.7
WMT24++ (ChrF) 36.7 48.4 53.9 55.7
FloRes 29.5 39.2 46.0 48.8
XQuAD (all) 43.9 68.0 74.5 76.8
ECLeKTic 4.69 11.0 17.2 24.4
IndicGenBench 41.4 57.2 61.7 63.4

Multimodal

Benchmark Gemma 3 PT 4B Gemma 3 PT 12B Gemma 3 PT 27B
COCOcap 102 111 116
DocVQA (val) 72.8 82.3 85.6
InfoVQA (val) 44.1 54.8 59.4
MMMU (pt) 39.2 50.3 56.1
TextVQA (val) 58.9 66.5 68.6
RealWorldQA 45.5 52.2 53.9
ReMI 27.3 38.5 44.8
AI2D 63.2 75.2 79.0
ChartQA 63.6 74.7 76.3
VQAv2 63.9 71.2 72.9
BLINK 38.0 35.9 39.6
OKVQA 51.0 58.7 60.2
TallyQA 42.5 51.8 54.3
SpatialSense VQA 50.9 60.0 59.4
CountBenchQA 26.1 17.8 68.0

Reference

Original model card: google/gemma-3-4b-it

Downloads last month
56
Safetensors
Model size
1.7B params
Tensor type
BF16
·
U32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for NexaAI/gemma-3-4b-it-8bit-MLX

Finetuned
(161)
this model

Collection including NexaAI/gemma-3-4b-it-8bit-MLX