metadata
language:
- en
license: apache-2.0
tags:
- Qwen-3-14B
- instruct
- finetune
- reasoning
- hybrid-mode
- chatml
- function calling
- tool use
- json mode
- structured outputs
- atropos
- dataforge
- long context
- roleplaying
- chat
- mlx
base_model: NousResearch/Hermes-4-14B
library_name: mlx
widget:
- example_title: Hermes 4
messages:
- role: system
content: >-
You are Hermes 4, a capable, neutrally-aligned assistant. Prefer
concise, correct answers.
- role: user
content: Explain the difference between BFS and DFS to a new CS student.
pipeline_tag: text-generation
model-index:
- name: Hermes-4-Qwen-3-14B
results: []
NexVeridian/Hermes-4-14B-8bit
This model NexVeridian/Hermes-4-14B-8bit was converted to MLX format from NousResearch/Hermes-4-14B using mlx-lm version 0.27.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("NexVeridian/Hermes-4-14B-8bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)