See axolotl config
axolotl version: 0.9.0
base_model: THUDM/GLM-4-32B-0414
#base_model_ignore_patterns: "*/*"
# optionally might have model_type or tokenizer_type
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1
ds_type: parquet
type:
shuffle_merged_datasets: true
dataset_prepared_path: ./data/magnum-32b-data
val_set_size: 0.0025
output_dir: ./data/32b-lora-out
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
#liger_rope: false
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
cut_cross_entropy: true
sequence_len: 32768
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 128
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
peft_use_rslora: true
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: 32b-magnum-lora
wandb_entity:
wandb_watch:
wandb_name: run7-lora-0.02-clip-4.5e-5
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: rex
learning_rate: 4.5e-5
max_grad_norm: 0.02
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 40
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: ./deepspeed_configs/zero3_bf16.json
weight_decay: 0.0025
fsdp:
fsdp_config:
special_tokens:
data/32b-lora-out
This model is a fine-tuned version of THUDM/GLM-4-32B-0414 on the anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1 dataset. It achieves the following results on the evaluation set:
- Loss: 1.1206
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.348 | 0.0024 | 1 | 1.3957 |
1.1269 | 0.2506 | 104 | 1.1851 |
1.1548 | 0.5012 | 208 | 1.1661 |
1.0896 | 0.7518 | 312 | 1.1531 |
1.0712 | 1.0024 | 416 | 1.1447 |
1.0552 | 1.2530 | 520 | 1.1362 |
1.0567 | 1.5036 | 624 | 1.1275 |
1.0888 | 1.7542 | 728 | 1.1206 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for NewEden/GLM-Magnum-V5-Ckpts
Base model
THUDM/GLM-4-32B-0414