Edit model card

image/jpeg

NeuralNovel/Senzu-7B-v0.1

Embracing a quiet storm ..

Model Details

This model is a full parameter fine-tuned version of mistralai/Mistral-7B-v0.1

Trained on the Neural-DPO, metamath_gsm8k and RPGPT_PublicDomain-alpaca dataset.

This model excels at character roleplay, also with the ability of responding accurately to a wide variety of complex questions.

Buy Me a Coffee at ko-fi.com Join Our Discord!

base_model: mistralai/Mistral-7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets: 
  - path: practical-dreamer/RPGPT_PublicDomain-alpaca
    type: alpaca
    format: "[INST] {instruction} [/INST]"
    no_input_format: "[INST] {instruction} [/INST]"

datasets: 
  - path: shuyuej/metamath_gsm8k
    type: jeopardy
    format: "[INST] {instruction} [/INST]"
    no_input_format: "[INST] {instruction} [/INST]"

datasets:
  - path: NeuralNovel/Neural-DPO
    type:
      system_prompt: ""
      field_system: system
      field_instruction: chosen
      field_output: chosen
      format: "[INST] {instruction} [/INST]"
      no_input_format: "[INST] {instruction} [/INST]"
      
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out

sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project:
wandb_entity:
wandb_watch:
wandb_name: 
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 0
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.2061 0.01 1 0.3139
0.0 0.25 32 0.0000
0.0 0.5 64 0.0010
0.0 0.76 96 0.0000

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.0

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 56.40
AI2 Reasoning Challenge (25-Shot) 58.19
HellaSwag (10-Shot) 81.98
MMLU (5-Shot) 63.20
TruthfulQA (0-shot) 40.20
Winogrande (5-shot) 76.64
GSM8k (5-shot) 18.20
Downloads last month
44
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NeuralNovel/Senzu-7B-v0.1

Finetuned
(685)
this model
Quantizations
4 models

Datasets used to train NeuralNovel/Senzu-7B-v0.1