File size: 1,306 Bytes
b333309 bc2fd4b ee56f2c 1c7ed30 59ab29b b333309 d3585c8 b333309 257aca5 47aafa5 8380d20 ea984e0 b333309 a6c7350 b333309 257aca5 47aafa5 8380d20 ea984e0 b333309 d604dfb b333309 47aafa5 8380d20 b333309 ea984e0 b333309 47aafa5 ea984e0 8380d20 ea984e0 47aafa5 8380d20 b1b91fb bc2fd4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: mit
language:
- en
base_model:
- distilbert/distilbert-base-uncased
pipeline_tag: text-classification
tags:
- bert
- text
- classification
- ai
library_name: transformers
---
DistilBERT AI-vs-Human Text Classifier
This is a binary text classification model built on top of distilbert-base-uncased.
It has been fine-tuned to distinguish between AI-generated and human-written text.
Base model: DistilBERT (uncased)
Task: Sequence classification
Labels:
0 → Human-written text
1 → AI-generated text
--------------------------------
Training Details:
Model is fine-tuned on a small custom dataset of ~1.4k samples
Batch size: 16
Epochs: 10
Learning rate: 5e-6
------------------------------
Performance:
Best validation metrics:
Accuracy: 0.5730 (57.3%)
Precision: 0.6162
Recall: 0.9858
F1-score: 0.6814
----------------------------
Usage
Load the model and tokenizer with the Hugging Face Transformers library, provide a text input, and the model will output a label indicating whether the text is AI-generated or human-written.
-----------------------------
Framework: PyTorch, Hugging Face Transformers
-----------------------------
License: MIT License
------------------------------
NOTE: This model is experimental and not intended for production use |