File size: 1,306 Bytes
b333309
 
 
 
 
 
bc2fd4b
ee56f2c
 
 
 
1c7ed30
59ab29b
b333309
 
 
 
 
 
 
 
 
 
 
 
 
 
d3585c8
b333309
 
257aca5
47aafa5
8380d20
 
ea984e0
b333309
a6c7350
b333309
 
 
 
 
 
 
257aca5
47aafa5
8380d20
 
ea984e0
b333309
 
 
d604dfb
b333309
 
 
 
 
 
 
47aafa5
8380d20
 
b333309
ea984e0
b333309
 
47aafa5
ea984e0
8380d20
ea984e0
 
47aafa5
8380d20
b1b91fb
 
 
 
bc2fd4b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: mit
language:
- en
base_model:
- distilbert/distilbert-base-uncased
pipeline_tag: text-classification
tags:
- bert
- text
- classification
- ai
library_name: transformers
---

DistilBERT AI-vs-Human Text Classifier

This is a binary text classification model built on top of distilbert-base-uncased.
It has been fine-tuned to distinguish between AI-generated and human-written text.

Base model: DistilBERT (uncased)

Task: Sequence classification

Labels:

0 → Human-written text

1 → AI-generated text


--------------------------------


Training Details:

Model is fine-tuned on a small custom dataset of ~1.4k samples

Batch size: 16

Epochs: 10

Learning rate: 5e-6


------------------------------


Performance:

Best validation metrics:

Accuracy: 0.5730 (57.3%)

Precision: 0.6162

Recall: 0.9858 

F1-score: 0.6814

----------------------------


Usage

Load the model and tokenizer with the Hugging Face Transformers library, provide a text input, and the model will output a label indicating whether the text is AI-generated or human-written.

-----------------------------


Framework: PyTorch, Hugging Face Transformers

-----------------------------

License: MIT License

------------------------------

NOTE: This model is experimental and not intended for production use