Neural-Hacker commited on
Commit
b333309
·
verified ·
1 Parent(s): e95d888

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -3
README.md CHANGED
@@ -1,3 +1,52 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ base_model:
6
+ - distilbert/distilbert-base-uncased
7
+ ---
8
+
9
+ DistilBERT AI-vs-Human Text Classifier
10
+
11
+ This is a binary text classification model built on top of distilbert-base-uncased.
12
+ It has been fine-tuned to distinguish between AI-generated and human-written text.
13
+
14
+ Base model: DistilBERT (uncased)
15
+
16
+ Task: Sequence classification
17
+
18
+ Labels:
19
+
20
+ 0 → Human-written text
21
+
22
+ 1 → AI-generated text
23
+
24
+ Framework: PyTorch, Hugging Face Transformers
25
+
26
+ Training Details
27
+
28
+ Dataset size: 1367 samples
29
+
30
+ Batch size: 16
31
+
32
+ Epochs: 10
33
+
34
+ Learning rate: 5e-6
35
+
36
+ Performance
37
+
38
+ Best validation metrics:
39
+
40
+ Accuracy: 0.5693
41
+
42
+ Precision: 0.6162
43
+
44
+ Recall: 0.9858
45
+
46
+ F1-score: 0.6814
47
+
48
+ Usage
49
+ Load the model and tokenizer with the Hugging Face Transformers library, provide a text input, and the model will output a label indicating whether the text is AI-generated or human-written.
50
+
51
+ License
52
+ MIT License