Update README.md
Browse files
README.md
CHANGED
@@ -1,77 +1,82 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
license: apache-2.0
|
4 |
-
base_model: Helsinki-NLP/opus-mt-vi-en
|
5 |
-
tags:
|
6 |
-
- translation
|
7 |
-
- generated_from_trainer
|
8 |
-
metrics:
|
9 |
-
- bleu
|
10 |
-
model-index:
|
11 |
-
- name: tatoeba-vi-tok
|
12 |
-
results: []
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
This model
|
21 |
-
|
22 |
-
|
23 |
-
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
-
|
48 |
-
-
|
49 |
-
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
59 |
-
|
60 |
-
|
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: Helsinki-NLP/opus-mt-vi-en
|
5 |
+
tags:
|
6 |
+
- translation
|
7 |
+
- generated_from_trainer
|
8 |
+
metrics:
|
9 |
+
- bleu
|
10 |
+
model-index:
|
11 |
+
- name: tatoeba-vi-tok
|
12 |
+
results: []
|
13 |
+
language:
|
14 |
+
- vi
|
15 |
+
- tok
|
16 |
+
datasets:
|
17 |
+
- NetherQuartz/tatoeba-tokipona
|
18 |
+
---
|
19 |
+
|
20 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
21 |
+
should probably proofread and complete it, then remove this comment. -->
|
22 |
+
|
23 |
+
# tatoeba-vi-tok
|
24 |
+
|
25 |
+
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-vi-en](https://huggingface.co/Helsinki-NLP/opus-mt-vi-en) on an unknown dataset.
|
26 |
+
It achieves the following results on the evaluation set:
|
27 |
+
- Loss: 0.6910
|
28 |
+
- Bleu: 46.4356
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 64
|
49 |
+
- eval_batch_size: 64
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 15
|
54 |
+
- mixed_precision_training: Native AMP
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu |
|
59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
|
60 |
+
| 1.2609 | 1.0 | 1167 | 1.0286 | 33.8552 |
|
61 |
+
| 0.98 | 2.0 | 2334 | 0.8700 | 39.5255 |
|
62 |
+
| 0.8347 | 3.0 | 3501 | 0.8036 | 41.4872 |
|
63 |
+
| 0.7753 | 4.0 | 4668 | 0.7661 | 43.3025 |
|
64 |
+
| 0.7272 | 5.0 | 5835 | 0.7389 | 44.2770 |
|
65 |
+
| 0.6876 | 6.0 | 7002 | 0.7254 | 45.1330 |
|
66 |
+
| 0.659 | 7.0 | 8169 | 0.7153 | 45.4847 |
|
67 |
+
| 0.6383 | 8.0 | 9336 | 0.7067 | 45.4353 |
|
68 |
+
| 0.6122 | 9.0 | 10503 | 0.7015 | 45.7612 |
|
69 |
+
| 0.5998 | 10.0 | 11670 | 0.6979 | 46.0799 |
|
70 |
+
| 0.5836 | 11.0 | 12837 | 0.6960 | 46.1173 |
|
71 |
+
| 0.5732 | 12.0 | 14004 | 0.6928 | 46.2538 |
|
72 |
+
| 0.5607 | 13.0 | 15171 | 0.6919 | 46.3801 |
|
73 |
+
| 0.553 | 14.0 | 16338 | 0.6911 | 46.3629 |
|
74 |
+
| 0.5518 | 15.0 | 17505 | 0.6910 | 46.4356 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.52.4
|
80 |
+
- Pytorch 2.7.1+cu128
|
81 |
+
- Datasets 3.6.0
|
82 |
+
- Tokenizers 0.21.1
|