mbart_billsum_model
This model is a fine-tuned version of facebook/mbart-large-50 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.4038
- Rouge1: 0.569
- Rouge2: 0.3743
- Rougel: 0.4579
- Rougelsum: 0.458
- Gen Len: 108.8
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.8339 | 1.0 | 500 | 1.4071 | 0.5566 | 0.3516 | 0.4471 | 0.4463 | 114.98 |
1.1349 | 2.0 | 1000 | 1.3177 | 0.569 | 0.3697 | 0.4545 | 0.4547 | 122.4 |
0.8392 | 3.0 | 1500 | 1.3514 | 0.5744 | 0.3846 | 0.4664 | 0.4669 | 107.89 |
0.6713 | 4.0 | 2000 | 1.4038 | 0.569 | 0.3743 | 0.4579 | 0.458 | 108.8 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 23
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for NastasiaM/mbart_billsum_model
Base model
facebook/mbart-large-50