mBART_billsum_desc_LT_nofreeze_model_en_NEU
This model is a fine-tuned version of facebook/mbart-large-50 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.0750
- Rouge1: 0.4735
- Rouge2: 0.272
- Rougel: 0.3564
- Rougelsum: 0.3567
- Gen Len: 110.04
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
5.8454 | 1.0 | 500 | 2.8617 | 0.0991 | 0.0444 | 0.0776 | 0.0783 | 124.38 |
2.4369 | 2.0 | 1000 | 2.2604 | 0.3651 | 0.2028 | 0.2747 | 0.2759 | 115.14 |
1.8154 | 3.0 | 1500 | 2.0983 | 0.4693 | 0.272 | 0.3581 | 0.358 | 113.78 |
1.5242 | 4.0 | 2000 | 2.0750 | 0.4735 | 0.272 | 0.3564 | 0.3567 | 110.04 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for NastasiaM/mBART_billsum_desc_LT_nofreeze_model_en_NEU
Base model
facebook/mbart-large-50