PULI Trio Q 7B base (7.62B billion parameter)

Dataset for continued pretraining

  • Hungarian (8.08 billion words): documents (763K) that exceed 5000 words in length + Hungarian Wikipedia

  • English: Long Context QA (2 billion words), BookSum (78 million words)

  • Chinese (3 billion Chinese characters): Wudao

  • The training was completed using a Hungarian-only dataset:

    • 626 million Hungarian words (2 epoch): Hungarian Wikipedia + News articles

Limitations

  • max_seq_length = 32 768
  • bfloat16

Usage with pipeline

from transformers import pipeline, Qwen2ForCausalLM, AutoTokenizer

model = Qwen2ForCausalLM.from_pretrained("NYTK/PULI-Trio-Q")
tokenizer = AutoTokenizer.from_pretrained("NYTK/PULI-Trio-Q")
prompt = "Elmesélek egy történetet a nyelvtechnológiáról."
generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, device=0)

print(generator(prompt, max_new_tokens=30)[0]["generated_text"])

Citation

If you use this model, please cite the following paper:

@inproceedings {yang-llumix-llama,
    title = {PULI Chat: Our First Hungarian Conversational Model},
    booktitle = {International Conference on Formal Methods and Foundations of Artificial Intelligence},
    year = {2025},
    publisher = {Eszterházy Károly Catholic University},
    address = {Eger, Hungary},
    author = {Yang, Zijian Győző and Bánfi, Ágnes and Dodé, Réka and Ferenczi, Gergő and Földesi, Flóra and Hatvani, Péter and Héja, Enikő and Lengyel, Mariann and  Madarász, Gábor and Osváth, Mátyás and Sárossy, Bence and Varga, Kristóf and Váradi, Tamás and Prószéky, Gábor and Ligeti-Nagy, Noémi},
    pages = {1--3},
    pubstate={accepted abstract},
    url ={https://uni-eszterhazy.hu/api/media/file/7f9158bd443acc29dbd2a211971fe8677768257c}
}
Downloads last month
106
Safetensors
Model size
7.62B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for NYTK/PULI-Trio-Q

Quantizations
1 model