segformer-b5-finetuned-morphpadver1-hgo-coord-v9_mix_resample_20epochs
This model is a fine-tuned version of nvidia/mit-b5 on the NICOPOI-9/morphpad_coord_hgo_512_4class_v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.9212
- Mean Iou: 0.6264
- Mean Accuracy: 0.7657
- Overall Accuracy: 0.7693
- Accuracy 0-0: 0.7303
- Accuracy 0-90: 0.8137
- Accuracy 90-0: 0.7916
- Accuracy 90-90: 0.7271
- Iou 0-0: 0.6366
- Iou 0-90: 0.6229
- Iou 90-0: 0.6132
- Iou 90-90: 0.6329
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.3571 | 1.3638 | 4000 | 1.3517 | 0.1822 | 0.3201 | 0.3311 | 0.2216 | 0.2676 | 0.6249 | 0.1665 | 0.1575 | 0.1831 | 0.2565 | 0.1315 |
0.8199 | 2.7276 | 8000 | 1.2275 | 0.2731 | 0.4274 | 0.4361 | 0.3563 | 0.5122 | 0.5256 | 0.3155 | 0.2523 | 0.3082 | 0.2937 | 0.2381 |
0.8824 | 4.0914 | 12000 | 1.1421 | 0.3520 | 0.5198 | 0.5231 | 0.4839 | 0.5162 | 0.5954 | 0.4839 | 0.3342 | 0.3733 | 0.3710 | 0.3297 |
0.5435 | 5.4552 | 16000 | 0.9993 | 0.4242 | 0.5921 | 0.5979 | 0.5242 | 0.6641 | 0.6381 | 0.5420 | 0.4136 | 0.4409 | 0.4348 | 0.4076 |
0.8088 | 6.8190 | 20000 | 1.0559 | 0.4473 | 0.6166 | 0.6183 | 0.5671 | 0.5950 | 0.6749 | 0.6296 | 0.4524 | 0.4525 | 0.4513 | 0.4331 |
0.3228 | 8.1827 | 24000 | 0.9718 | 0.4925 | 0.6572 | 0.6604 | 0.5965 | 0.6694 | 0.7118 | 0.6511 | 0.4794 | 0.5029 | 0.4892 | 0.4985 |
0.8418 | 9.5465 | 28000 | 0.9748 | 0.5147 | 0.6735 | 0.6808 | 0.6234 | 0.7941 | 0.6989 | 0.5776 | 0.5228 | 0.5218 | 0.5217 | 0.4925 |
0.4066 | 10.9103 | 32000 | 0.9678 | 0.5360 | 0.6956 | 0.6985 | 0.6499 | 0.7135 | 0.7388 | 0.6803 | 0.5274 | 0.5461 | 0.5374 | 0.5330 |
0.3456 | 12.2741 | 36000 | 0.8965 | 0.5680 | 0.7221 | 0.7245 | 0.6491 | 0.7611 | 0.7252 | 0.7532 | 0.5661 | 0.5709 | 0.5625 | 0.5725 |
0.3544 | 13.6379 | 40000 | 0.8759 | 0.5800 | 0.7301 | 0.7343 | 0.7005 | 0.8018 | 0.7436 | 0.6744 | 0.5869 | 0.5831 | 0.5780 | 0.5721 |
0.3027 | 15.0017 | 44000 | 0.8860 | 0.5966 | 0.7437 | 0.7471 | 0.6909 | 0.7757 | 0.7824 | 0.7257 | 0.6008 | 0.5977 | 0.5931 | 0.5947 |
0.1839 | 16.3655 | 48000 | 0.9557 | 0.6063 | 0.7507 | 0.7537 | 0.7106 | 0.7862 | 0.7744 | 0.7317 | 0.6161 | 0.6070 | 0.5849 | 0.6170 |
0.1924 | 17.7293 | 52000 | 0.8912 | 0.6285 | 0.7682 | 0.7711 | 0.7340 | 0.8063 | 0.7894 | 0.7432 | 0.6382 | 0.6315 | 0.6125 | 0.6315 |
0.2531 | 19.0931 | 56000 | 0.9212 | 0.6264 | 0.7657 | 0.7693 | 0.7303 | 0.8137 | 0.7916 | 0.7271 | 0.6366 | 0.6229 | 0.6132 | 0.6329 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.1.0
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for NICOPOI-9/segformer-b5-finetuned-morphpadver1-hgo-coord-v9_mix_resample_20epochs
Base model
nvidia/mit-b5