segformer-b5-finetuned-morphpadver1-hgo-coord-v8_mix_resample_20epochs
This model is a fine-tuned version of nvidia/mit-b5 on the NICOPOI-9/morphpad_coord_hgo_512_4class_v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1662
- Mean Iou: 0.9145
- Mean Accuracy: 0.9539
- Overall Accuracy: 0.9551
- Accuracy 0-0: 0.9434
- Accuracy 0-90: 0.9670
- Accuracy 90-0: 0.9662
- Accuracy 90-90: 0.9390
- Iou 0-0: 0.9189
- Iou 0-90: 0.9107
- Iou 90-0: 0.9106
- Iou 90-90: 0.9181
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.3433 | 1.3638 | 4000 | 1.3061 | 0.2130 | 0.3543 | 0.3666 | 0.2175 | 0.5568 | 0.3968 | 0.2460 | 0.1696 | 0.2670 | 0.2344 | 0.1813 |
0.6413 | 2.7276 | 8000 | 0.9887 | 0.3847 | 0.5482 | 0.5575 | 0.4684 | 0.7205 | 0.5574 | 0.4468 | 0.3795 | 0.3902 | 0.3956 | 0.3736 |
0.5943 | 4.0914 | 12000 | 0.7461 | 0.5269 | 0.6874 | 0.6893 | 0.6820 | 0.6888 | 0.7283 | 0.6505 | 0.5493 | 0.5185 | 0.5213 | 0.5186 |
0.3558 | 5.4552 | 16000 | 0.6020 | 0.6131 | 0.7528 | 0.7586 | 0.7312 | 0.8810 | 0.7401 | 0.6588 | 0.6330 | 0.5916 | 0.6263 | 0.6013 |
0.4599 | 6.8190 | 20000 | 0.4441 | 0.7185 | 0.8303 | 0.8347 | 0.8221 | 0.9146 | 0.8356 | 0.7488 | 0.7563 | 0.6939 | 0.7257 | 0.6979 |
0.2557 | 8.1827 | 24000 | 0.3843 | 0.7536 | 0.8536 | 0.8587 | 0.7902 | 0.9352 | 0.8732 | 0.8158 | 0.7588 | 0.7358 | 0.7633 | 0.7563 |
0.5117 | 9.5465 | 28000 | 0.3007 | 0.8088 | 0.8914 | 0.8931 | 0.8711 | 0.9330 | 0.8824 | 0.8789 | 0.8237 | 0.7859 | 0.8062 | 0.8196 |
0.1445 | 10.9103 | 32000 | 0.2623 | 0.8378 | 0.9114 | 0.9111 | 0.9184 | 0.9072 | 0.9090 | 0.9110 | 0.8475 | 0.8254 | 0.8302 | 0.8480 |
0.1051 | 12.2741 | 36000 | 0.2383 | 0.8477 | 0.9174 | 0.9171 | 0.9327 | 0.9096 | 0.9203 | 0.9070 | 0.8655 | 0.8462 | 0.8332 | 0.8459 |
0.1346 | 13.6379 | 40000 | 0.2149 | 0.8673 | 0.9272 | 0.9286 | 0.9180 | 0.9429 | 0.9402 | 0.9077 | 0.8763 | 0.8609 | 0.8624 | 0.8697 |
0.1045 | 15.0017 | 44000 | 0.1777 | 0.8982 | 0.9464 | 0.9462 | 0.9465 | 0.9345 | 0.9540 | 0.9507 | 0.9009 | 0.8964 | 0.8925 | 0.9030 |
0.0383 | 16.3655 | 48000 | 0.1812 | 0.9011 | 0.9466 | 0.9478 | 0.9454 | 0.9574 | 0.9603 | 0.9235 | 0.9072 | 0.8996 | 0.8965 | 0.9010 |
0.0416 | 17.7293 | 52000 | 0.1494 | 0.9167 | 0.9556 | 0.9564 | 0.9524 | 0.9651 | 0.9626 | 0.9422 | 0.9215 | 0.9158 | 0.9114 | 0.9181 |
0.0732 | 19.0931 | 56000 | 0.1662 | 0.9145 | 0.9539 | 0.9551 | 0.9434 | 0.9670 | 0.9662 | 0.9390 | 0.9189 | 0.9107 | 0.9106 | 0.9181 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.1.0
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 25
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for NICOPOI-9/segformer-b5-finetuned-morphpadver1-hgo-coord-v8_mix_resample_20epochs
Base model
nvidia/mit-b5