YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Enhanced Semantic Extraction and Guidance for UGC Image Super Resolution

Yiwen Wang1 | Ying Liang1 | Yuxuan Zhang1 | Xinning Chai1 | Zhengxue Cheng1 | Yingsheng Qin2 | Yucai Yang2 | Rong Xie1 | Li Song1

1Shanghai Jiao Tong University, China, 2Transsion, China

paper address

All codes are released on Github

🚩Accepted by CVPR2024

⚙️ Dependencies and Installation

## git clone this repository
git clone https://huggingface.co/NGain/Medialab
cd Medialab

# create an environment with python >= 3.8
conda create -n medialab python=3.8
conda activate medialab
pip install -r requirements.txt

# or you can directly install the environment by following instruct
conda env create -f medialab.yml
conda activate medialab

🚀 Quick Inference

Step 1: Download the pretrained models

  • Download the pretrained SD-2-base models from HuggingFace
  • Download the checkpoint, sam2.1_hiera_tiny, ram_swin_large and DAPE models from GoogleDrive.
  • or you can directly download these files in the repository.

You can put the models into preset/models.

Step 2: Prepare testing data

You can put the testing images in the preset/datasets/test_datasets.

Step 3: Running testing command

# for wild dataset
python ./test_seesr_sam.py \
--pretrained_model_path ./preset/models/stable-diffusion-2-base \
--prompt '' \
--seesr_model_path ./preset/models/checkpoint-90000 \
--ram_ft_path ./preset/models/DAPE.pth \
--image_path ./preset/datasets/test_datasets/wild \
--output_dir your_output_dir_path/wild \
--start_point noise \
--num_inference_steps 50 \
--guidance_scale 14 \
--added_prompt "clean, high-resolution, 8k, ultra-detailed, ultra-realistic" \
--upscale 1 \
--process_size 512

# for synthetic dataset
python ./test_seesr_sam.py \
--pretrained_model_path ./preset/models/stable-diffusion-2-base \
--prompt '' \
--seesr_model_path ./preset/models/checkpoint-90000 \
--ram_ft_path ./preset/models/DAPE.pth \
--image_path ./preset/datasets/test_datasets/synthetic \
--output_dir your_output_dir_path/synthetic \
--start_point noise \
--num_inference_steps 50 \
--guidance_scale 0.9 \
--upscale 4 \
--process_size 512

More details are here

🌈 Train

Will release soon.

❤️ Acknowledgments

This project is based on diffusers and SeeSR. Some codes are brought from PASD, RAM and SAM2). Thanks for their awesome works. We also pay tribute to the pioneering work of StableSR.

📧 Contact

If you have any questions, please feel free to contact: [email protected]

🎫 License

This project and related weights are released under the Apache 2.0 license.

statistics

visitors

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support