bigbird_withTokenizer_nli_classifier_mnli_anli_fevernli_xnli

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5197
  • F1 Macro: 0.6898
  • F1 Micro: 0.7543
  • Accuracy Balanced: 0.6777
  • Accuracy: 0.7543
  • Precision Macro: 0.7416
  • Recall Macro: 0.6777
  • Precision Micro: 0.7543
  • Recall Micro: 0.7543

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Accuracy Balanced F1 Macro F1 Micro Validation Loss Precision Macro Precision Micro Recall Macro Recall Micro
0.2556 1.0 12340 0.7498 0.6626 0.6735 0.7498 0.5150 0.7463 0.7498 0.6626 0.7498
0.2022 2.0 24680 0.5197 0.6898 0.7543 0.6777 0.7543 0.7416 0.6777 0.7543 0.7543

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
10
Safetensors
Model size
128M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support