NanoLM-1B-Instruct-v1.1 / README_zh-CN.md
Mxode's picture
upload model
ae440e5

NanoLM-1B-Instruct-v1.1

English | 简体中文

Introduction

为了探究小模型的潜能,我尝试构建一系列小模型,并存放于 NanoLM Collections

这是 NanoLM-1B-Instruct-v1.1。该模型目前仅支持英文

模型详情

Nano LMs Non-emb Params Arch Layers Dim Heads Seq Len
25M 15M MistralForCausalLM 12 312 12 2K
70M 42M LlamaForCausalLM 12 576 9 2K
0.3B 180M Qwen2ForCausalLM 12 896 14 4K
1B 840M Qwen2ForCausalLM 18 1536 12 4K

如何使用

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = 'Mxode/NanoLM-1B-Instruct-v1.1'

model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_path)


def get_response(prompt: str, **kwargs):
    generation_args = dict(
        max_new_tokens = kwargs.pop("max_new_tokens", 512),
        do_sample = kwargs.pop("do_sample", True),
        temperature = kwargs.pop("temperature", 0.7),
        top_p = kwargs.pop("top_p", 0.8),
        top_k = kwargs.pop("top_k", 40),
        **kwargs
    )

    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt}
    ]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    generated_ids = model.generate(model_inputs.input_ids, **generation_args)
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]

    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    return response


prompt = "Calculate (4 - 1)^(9 - 5)"
print(get_response(prompt, do_sample=False))

"""
The expression (4 - 1)^(9 - 5) can be simplified as follows:

(4 - 1) = 3

So the expression becomes 3^(9 - 5)

3^(9 - 5) = 3^4

3^4 = 81

Therefore, (4 - 1)^(9 - 5) = 81.
"""