File size: 24,693 Bytes
7cef3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- language
- granite-3.1
---
# <span style="color: #7FFF7F;">granite-3.1-1b-a400m-base GGUF Models</span>
## <span style="color: #7F7FFF;">Model Generation Details</span>
This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`0a5a3b5c`](https://github.com/ggerganov/llama.cpp/commit/0a5a3b5cdfd887cf0f8e09d9ff89dee130cfcdde).
---
<a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
Click here to get info on choosing the right GGUF model format
</a>
---
<!--Begin Original Model Card-->
# Granite-3.1-1B-A400M-Base
**Model Summary:**
Granite-3.1-1B-A400M-Base extends the context length of Granite-3.0-1B-A400M-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K. This long-context pre-training stage was performed using approximately 500B tokens.
- **Developers:** Granite Team, IBM
- **GitHub Repository:** [ibm-granite/granite-3.1-language-models](https://github.com/ibm-granite/granite-3.1-language-models)
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
- **Paper:** [Granite 3.1 Language Models (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d)
- **Release Date**: December 18th, 2024
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
**Supported Languages:**
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.1 models for languages beyond these 12 languages.
**Intended Use:**
Prominent use cases of LLMs in text-to-text generation include summarization, text classification, extraction, question-answering, and more. All Granite Base models are able to handle these tasks as they were trained on a large amount of data from various domains. Moreover, they can serve as baseline to create specialized models for specific application scenarios.
**Generation:**
This is a simple example of how to use Granite-3.1-1B-A400M-Base model.
Install the following libraries:
```shell
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
```
Then, copy the code snippet below to run the example.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "auto"
model_path = "ibm-granite/granite-3.1-1b-a400m-base"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
input_text = "Where is the Thomas J. Watson Research Center located?"
# tokenize the text
input_tokens = tokenizer(input_text, return_tensors="pt").to(device)
# generate output tokens
output = model.generate(**input_tokens,
max_length=4000)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# print output
print(output)
```
**Evaluation Results:**
<table>
<caption><b>HuggingFace Open LLM Leaderboard V1</b></caption>
<thead>
<tr>
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
<th style="text-align:center; background-color: #001d6c; color: white;">ARC-Challenge</th>
<th style="text-align:center; background-color: #001d6c; color: white;">Hellaswag</th>
<th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
<th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
<th style="text-align:center; background-color: #001d6c; color: white;">Winogrande</th>
<th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
<th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
</tr></thead>
<tbody>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Base</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">63.99</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">83.27</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">63.45</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">51.29</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">78.92</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">60.19</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">66.85</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Base</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">53.58</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">77.67</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">52.86</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.02</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">72.84</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">47.99</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">57.32</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Base</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">50.76</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">74.45</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">48.31</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.91</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">69.29</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">40.56</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">53.88</td>
</tr>
<tr>
<td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-1B-A400M-Base</td>
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">39.42</td>
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">66.13</td>
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">26.53</td>
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">37.67</td>
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">2.03</td>
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">18.87</td>
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">31.78</td>
</tr>
</tbody></table>
<table>
<caption><b>HuggingFace Open LLM Leaderboard V2</b></caption>
<thead>
<tr>
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
<th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
<th style="text-align:center; background-color: #001d6c; color: white;">BBH</th>
<th style="text-align:center; background-color: #001d6c; color: white;">MATH Lvl 5</th>
<th style="text-align:center; background-color: #001d6c; color: white;">GPQA</th>
<th style="text-align:center; background-color: #001d6c; color: white;">MUSR</th>
<th style="text-align:center; background-color: #001d6c; color: white;">MMLU-Pro</th>
<th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
</tr></thead>
<tbody>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Base</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">42.21</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">26.02</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">9.52</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">9.51</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.36</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">24.8</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">20.07</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Base</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">35.22</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">16.84</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">5.59</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.69</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.9</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.9</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.19</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Base</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">29.96</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">11.91</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">4</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.69</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">1.11</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">8.81</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">9.91</td>
</tr>
<tr>
<td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-1B-A400M-Base</td>
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">25.19</td>
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">6.43</td>
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">2.19</td>
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">0.22</td>
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">1.76</td>
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">1.55</td>
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">6.22</td>
</tr>
</tbody></table>
**Model Architecture:**
Granite-3.1-1B-A400M-Base is based on a decoder-only sparse Mixture of Experts (MoE) transformer architecture. Core components of this architecture are: Fine-grained Experts, Dropless Token Routing, and Load Balancing Loss.
<table>
<thead>
<tr>
<th style="text-align:left; background-color: #001d6c; color: white;">Model</th>
<th style="text-align:center; background-color: #001d6c; color: white;">2B Dense</th>
<th style="text-align:center; background-color: #001d6c; color: white;">8B Dense</th>
<th style="text-align:center; background-color: #001d6c; color: white;">1B MoE</th>
<th style="text-align:center; background-color: #001d6c; color: white;">3B MoE</th>
</tr></thead>
<tbody>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;">Embedding size</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">2048</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">4096</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">1024</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">1536</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of layers</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">24</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;">Attention head size</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">128</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">64</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of attention heads</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">16</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">24</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of KV heads</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;">MLP hidden size</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">8192</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">12800</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">512</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">512</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;">MLP activation</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">SwiGLU</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of experts</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">โ</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">โ</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">32</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;">MoE TopK</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">โ</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">โ</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;">Initialization std</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">0.1</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;">Sequence length</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">128K</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;">Position embedding</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">RoPE</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Parameters</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">1.3B</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">3.3B</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Active parameters</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">400M</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">800M</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Training tokens</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
<td style="text-align:center; background-color: #DAE8FF; color: black;">10T</td>
<td style="text-align:center; background-color: #FFFFFF; color: black;">10T</td>
</tr>
</tbody></table>
**Training Data:**
This model is trained on a mix of open source and proprietary data following a two-stage training strategy.
* Stage 1 data: The data for stage 1 is sourced from diverse domains, such as: web, code, academic sources, books, and math data.
* Stage 2 data: The data for stage 2 comprises a curated mix of high-quality data from the same domains, plus multilingual and instruction data. The goal of this second training phase is to enhance the modelโs performance on specific tasks.
* Stage 3 data: The data for stage 3 consists of original stage-2 pretraining data with additional synthetic long-context data in form of QA/summary pairs where the answer contains a recitation of the related paragraph before the answer.
A detailed attribution of datasets can be found in the [Granite 3.0 Technical Report](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf), [Granite 3.1 Technical Report (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf).
**Infrastructure:**
We train Granite 3.1 Language Models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.
**Ethical Considerations and Limitations:**
The use of Large Language Models involves risks and ethical considerations people must be aware of, including but not limited to: bias and fairness, misinformation, and autonomous decision-making. Granite-3.1-1B-A400M-Base model is not the exception in this regard. Even though this model is suited for multiple generative AI tasks, it has not undergone any safety alignment, there it may produce problematic outputs. Additionally, it remains uncertain whether smaller models might exhibit increased susceptibility to hallucination in generation scenarios by copying text verbatim from the training dataset due to their reduced sizes and memorization capacities. This aspect is currently an active area of research, and we anticipate more rigorous exploration, comprehension, and mitigations in this domain. Regarding ethics, a latent risk associated with all Large Language Models is their malicious utilization. We urge the community to use Granite-3.1-1B-A400M-Base model with ethical intentions and in a responsible way.
**Resources**
- โญ๏ธ Learn about the latest updates with Granite: https://www.ibm.com/granite
- ๐ Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
- ๐ก Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources
<!-- ## Citation
```
@misc{granite-models,
author = {author 1, author2, ...},
title = {},
journal = {},
volume = {},
year = {2024},
url = {https://arxiv.org/abs/0000.00000},
}
``` -->
<!--End Original Model Card-->
---
# <span id="testllm" style="color: #7F7FFF;">๐ If you find these models useful</span>
Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:
๐ [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)
๐ฌ **How to test**:
Choose an **AI assistant type**:
- `TurboLLM` (GPT-4.1-mini)
- `HugLLM` (Hugginface Open-source models)
- `TestLLM` (Experimental CPU-only)
### **What Iโm Testing**
Iโm pushing the limits of **small open-source models for AI network monitoring**, specifically:
- **Function calling** against live network services
- **How small can a model go** while still handling:
- Automated **Nmap security scans**
- **Quantum-readiness checks**
- **Network Monitoring tasks**
๐ก **TestLLM** โ Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
- โ
**Zero-configuration setup**
- โณ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
- ๐ง **Help wanted!** If youโre into **edge-device AI**, letโs collaborate!
### **Other Assistants**
๐ข **TurboLLM** โ Uses **gpt-4.1-mini** :
- **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
- **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
- **Real-time network diagnostics and monitoring**
- **Security Audits**
- **Penetration testing** (Nmap/Metasploit)
๐ต **HugLLM** โ Latest Open-source models:
- ๐ Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
### ๐ก **Example commands you could test**:
1. `"Give me info on my websites SSL certificate"`
2. `"Check if my server is using quantum safe encyption for communication"`
3. `"Run a comprehensive security audit on my server"`
4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!
### Final Word
I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAIโall out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) โ. Your support helps cover service costs and allows me to raise token limits for everyone.
I'm also open to job opportunities or sponsorship.
Thank you! ๐
|