Mungert commited on
Commit
7cef3a8
·
verified ·
1 Parent(s): b3db438

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +408 -0
README.md ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ inference: false
4
+ license: apache-2.0
5
+ library_name: transformers
6
+ tags:
7
+ - language
8
+ - granite-3.1
9
+ ---
10
+
11
+ # <span style="color: #7FFF7F;">granite-3.1-1b-a400m-base GGUF Models</span>
12
+
13
+
14
+ ## <span style="color: #7F7FFF;">Model Generation Details</span>
15
+
16
+ This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`0a5a3b5c`](https://github.com/ggerganov/llama.cpp/commit/0a5a3b5cdfd887cf0f8e09d9ff89dee130cfcdde).
17
+
18
+
19
+
20
+
21
+
22
+
23
+ ---
24
+
25
+ <a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
26
+ Click here to get info on choosing the right GGUF model format
27
+ </a>
28
+
29
+ ---
30
+
31
+
32
+
33
+ <!--Begin Original Model Card-->
34
+
35
+
36
+ # Granite-3.1-1B-A400M-Base
37
+
38
+ **Model Summary:**
39
+ Granite-3.1-1B-A400M-Base extends the context length of Granite-3.0-1B-A400M-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K. This long-context pre-training stage was performed using approximately 500B tokens.
40
+
41
+ - **Developers:** Granite Team, IBM
42
+ - **GitHub Repository:** [ibm-granite/granite-3.1-language-models](https://github.com/ibm-granite/granite-3.1-language-models)
43
+ - **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
44
+ - **Paper:** [Granite 3.1 Language Models (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d)
45
+ - **Release Date**: December 18th, 2024
46
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
47
+
48
+ **Supported Languages:**
49
+ English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.1 models for languages beyond these 12 languages.
50
+
51
+ **Intended Use:**
52
+ Prominent use cases of LLMs in text-to-text generation include summarization, text classification, extraction, question-answering, and more. All Granite Base models are able to handle these tasks as they were trained on a large amount of data from various domains. Moreover, they can serve as baseline to create specialized models for specific application scenarios.
53
+
54
+ **Generation:**
55
+ This is a simple example of how to use Granite-3.1-1B-A400M-Base model.
56
+
57
+ Install the following libraries:
58
+
59
+ ```shell
60
+ pip install torch torchvision torchaudio
61
+ pip install accelerate
62
+ pip install transformers
63
+ ```
64
+ Then, copy the code snippet below to run the example.
65
+
66
+ ```python
67
+ from transformers import AutoModelForCausalLM, AutoTokenizer
68
+ device = "auto"
69
+ model_path = "ibm-granite/granite-3.1-1b-a400m-base"
70
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
71
+ # drop device_map if running on CPU
72
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
73
+ model.eval()
74
+ # change input text as desired
75
+ input_text = "Where is the Thomas J. Watson Research Center located?"
76
+ # tokenize the text
77
+ input_tokens = tokenizer(input_text, return_tensors="pt").to(device)
78
+ # generate output tokens
79
+ output = model.generate(**input_tokens,
80
+ max_length=4000)
81
+ # decode output tokens into text
82
+ output = tokenizer.batch_decode(output)
83
+ # print output
84
+ print(output)
85
+ ```
86
+ **Evaluation Results:**
87
+ <table>
88
+ <caption><b>HuggingFace Open LLM Leaderboard V1</b></caption>
89
+ <thead>
90
+ <tr>
91
+ <th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
92
+ <th style="text-align:center; background-color: #001d6c; color: white;">ARC-Challenge</th>
93
+ <th style="text-align:center; background-color: #001d6c; color: white;">Hellaswag</th>
94
+ <th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
95
+ <th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
96
+ <th style="text-align:center; background-color: #001d6c; color: white;">Winogrande</th>
97
+ <th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
98
+ <th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
99
+ </tr></thead>
100
+ <tbody>
101
+ <tr>
102
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Base</td>
103
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">63.99</td>
104
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">83.27</td>
105
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">63.45</td>
106
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">51.29</td>
107
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">78.92</td>
108
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">60.19</td>
109
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">66.85</td>
110
+ </tr>
111
+ <tr>
112
+ <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Base</td>
113
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">53.58</td>
114
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">77.67</td>
115
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">52.86</td>
116
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.02</td>
117
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">72.84</td>
118
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">47.99</td>
119
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">57.32</td>
120
+ </tr>
121
+ <tr>
122
+ <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Base</td>
123
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">50.76</td>
124
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">74.45</td>
125
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">48.31</td>
126
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.91</td>
127
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">69.29</td>
128
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">40.56</td>
129
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">53.88</td>
130
+ </tr>
131
+ <tr>
132
+ <td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-1B-A400M-Base</td>
133
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">39.42</td>
134
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">66.13</td>
135
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">26.53</td>
136
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">37.67</td>
137
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">2.03</td>
138
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">18.87</td>
139
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">31.78</td>
140
+ </tr>
141
+ </tbody></table>
142
+
143
+ <table>
144
+ <caption><b>HuggingFace Open LLM Leaderboard V2</b></caption>
145
+ <thead>
146
+ <tr>
147
+ <th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
148
+ <th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
149
+ <th style="text-align:center; background-color: #001d6c; color: white;">BBH</th>
150
+ <th style="text-align:center; background-color: #001d6c; color: white;">MATH Lvl 5</th>
151
+ <th style="text-align:center; background-color: #001d6c; color: white;">GPQA</th>
152
+ <th style="text-align:center; background-color: #001d6c; color: white;">MUSR</th>
153
+ <th style="text-align:center; background-color: #001d6c; color: white;">MMLU-Pro</th>
154
+ <th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
155
+ </tr></thead>
156
+ <tbody>
157
+ <tr>
158
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Base</td>
159
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">42.21</td>
160
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">26.02</td>
161
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">9.52</td>
162
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">9.51</td>
163
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8.36</td>
164
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">24.8</td>
165
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">20.07</td>
166
+ </tr>
167
+ <tr>
168
+ <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Base</td>
169
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">35.22</td>
170
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">16.84</td>
171
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">5.59</td>
172
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.69</td>
173
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.9</td>
174
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.9</td>
175
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.19</td>
176
+ </tr>
177
+ <tr>
178
+ <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Base</td>
179
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">29.96</td>
180
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">11.91</td>
181
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">4</td>
182
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.69</td>
183
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">1.11</td>
184
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">8.81</td>
185
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">9.91</td>
186
+ </tr>
187
+ <tr>
188
+ <td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-1B-A400M-Base</td>
189
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">25.19</td>
190
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">6.43</td>
191
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">2.19</td>
192
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">0.22</td>
193
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">1.76</td>
194
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">1.55</td>
195
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">6.22</td>
196
+ </tr>
197
+ </tbody></table>
198
+
199
+ **Model Architecture:**
200
+ Granite-3.1-1B-A400M-Base is based on a decoder-only sparse Mixture of Experts (MoE) transformer architecture. Core components of this architecture are: Fine-grained Experts, Dropless Token Routing, and Load Balancing Loss.
201
+
202
+ <table>
203
+ <thead>
204
+ <tr>
205
+ <th style="text-align:left; background-color: #001d6c; color: white;">Model</th>
206
+ <th style="text-align:center; background-color: #001d6c; color: white;">2B Dense</th>
207
+ <th style="text-align:center; background-color: #001d6c; color: white;">8B Dense</th>
208
+ <th style="text-align:center; background-color: #001d6c; color: white;">1B MoE</th>
209
+ <th style="text-align:center; background-color: #001d6c; color: white;">3B MoE</th>
210
+ </tr></thead>
211
+ <tbody>
212
+ <tr>
213
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Embedding size</td>
214
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">2048</td>
215
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">4096</td>
216
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">1024</td>
217
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">1536</td>
218
+ </tr>
219
+ <tr>
220
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of layers</td>
221
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
222
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
223
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">24</td>
224
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
225
+ </tr>
226
+ <tr>
227
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Attention head size</td>
228
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
229
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">128</td>
230
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">64</td>
231
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
232
+ </tr>
233
+ <tr>
234
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of attention heads</td>
235
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
236
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
237
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">16</td>
238
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">24</td>
239
+ </tr>
240
+ <tr>
241
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of KV heads</td>
242
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
243
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
244
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
245
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
246
+ </tr>
247
+ <tr>
248
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">MLP hidden size</td>
249
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8192</td>
250
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">12800</td>
251
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">512</td>
252
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">512</td>
253
+ </tr>
254
+ <tr>
255
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">MLP activation</td>
256
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
257
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
258
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">SwiGLU</td>
259
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
260
+ </tr>
261
+ <tr>
262
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of experts</td>
263
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
264
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
265
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">32</td>
266
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
267
+ </tr>
268
+ <tr>
269
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">MoE TopK</td>
270
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
271
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
272
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
273
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
274
+ </tr>
275
+ <tr>
276
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Initialization std</td>
277
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
278
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
279
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">0.1</td>
280
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
281
+ </tr>
282
+ <tr>
283
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Sequence length</td>
284
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
285
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
286
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">128K</td>
287
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
288
+ </tr>
289
+ <tr>
290
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Position embedding</td>
291
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
292
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
293
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">RoPE</td>
294
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
295
+ </tr>
296
+ <tr>
297
+ <td style="text-align:left; background-color: #FFFFFF; color: black;"># Parameters</td>
298
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
299
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
300
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">1.3B</td>
301
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">3.3B</td>
302
+ </tr>
303
+ <tr>
304
+ <td style="text-align:left; background-color: #FFFFFF; color: black;"># Active parameters</td>
305
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
306
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
307
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">400M</td>
308
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">800M</td>
309
+ </tr>
310
+ <tr>
311
+ <td style="text-align:left; background-color: #FFFFFF; color: black;"># Training tokens</td>
312
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
313
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
314
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">10T</td>
315
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">10T</td>
316
+ </tr>
317
+ </tbody></table>
318
+
319
+ **Training Data:**
320
+ This model is trained on a mix of open source and proprietary data following a two-stage training strategy.
321
+ * Stage 1 data: The data for stage 1 is sourced from diverse domains, such as: web, code, academic sources, books, and math data.
322
+ * Stage 2 data: The data for stage 2 comprises a curated mix of high-quality data from the same domains, plus multilingual and instruction data. The goal of this second training phase is to enhance the model’s performance on specific tasks.
323
+ * Stage 3 data: The data for stage 3 consists of original stage-2 pretraining data with additional synthetic long-context data in form of QA/summary pairs where the answer contains a recitation of the related paragraph before the answer.
324
+
325
+ A detailed attribution of datasets can be found in the [Granite 3.0 Technical Report](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf), [Granite 3.1 Technical Report (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf).
326
+
327
+ **Infrastructure:**
328
+ We train Granite 3.1 Language Models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.
329
+
330
+ **Ethical Considerations and Limitations:**
331
+ The use of Large Language Models involves risks and ethical considerations people must be aware of, including but not limited to: bias and fairness, misinformation, and autonomous decision-making. Granite-3.1-1B-A400M-Base model is not the exception in this regard. Even though this model is suited for multiple generative AI tasks, it has not undergone any safety alignment, there it may produce problematic outputs. Additionally, it remains uncertain whether smaller models might exhibit increased susceptibility to hallucination in generation scenarios by copying text verbatim from the training dataset due to their reduced sizes and memorization capacities. This aspect is currently an active area of research, and we anticipate more rigorous exploration, comprehension, and mitigations in this domain. Regarding ethics, a latent risk associated with all Large Language Models is their malicious utilization. We urge the community to use Granite-3.1-1B-A400M-Base model with ethical intentions and in a responsible way.
332
+
333
+ **Resources**
334
+ - ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
335
+ - 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
336
+ - 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources
337
+
338
+ <!-- ## Citation
339
+ ```
340
+ @misc{granite-models,
341
+ author = {author 1, author2, ...},
342
+ title = {},
343
+ journal = {},
344
+ volume = {},
345
+ year = {2024},
346
+ url = {https://arxiv.org/abs/0000.00000},
347
+ }
348
+ ``` -->
349
+
350
+
351
+ <!--End Original Model Card-->
352
+
353
+ ---
354
+
355
+ # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
356
+
357
+ Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:
358
+
359
+ 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
360
+
361
+
362
+ The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)
363
+
364
+ 💬 **How to test**:
365
+ Choose an **AI assistant type**:
366
+ - `TurboLLM` (GPT-4.1-mini)
367
+ - `HugLLM` (Hugginface Open-source models)
368
+ - `TestLLM` (Experimental CPU-only)
369
+
370
+ ### **What I’m Testing**
371
+ I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
372
+ - **Function calling** against live network services
373
+ - **How small can a model go** while still handling:
374
+ - Automated **Nmap security scans**
375
+ - **Quantum-readiness checks**
376
+ - **Network Monitoring tasks**
377
+
378
+ 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
379
+ - ✅ **Zero-configuration setup**
380
+ - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
381
+ - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
382
+
383
+ ### **Other Assistants**
384
+ 🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
385
+ - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
386
+ - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
387
+ - **Real-time network diagnostics and monitoring**
388
+ - **Security Audits**
389
+ - **Penetration testing** (Nmap/Metasploit)
390
+
391
+ 🔵 **HugLLM** – Latest Open-source models:
392
+ - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
393
+
394
+ ### 💡 **Example commands you could test**:
395
+ 1. `"Give me info on my websites SSL certificate"`
396
+ 2. `"Check if my server is using quantum safe encyption for communication"`
397
+ 3. `"Run a comprehensive security audit on my server"`
398
+ 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!
399
+
400
+ ### Final Word
401
+
402
+ I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
403
+
404
+ If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
405
+
406
+ I'm also open to job opportunities or sponsorship.
407
+
408
+ Thank you! 😊