metadata
tags:
- generated_from_trainer
datasets:
- pile-instruct/
metrics:
- accuracy
model-index:
- name: layer_4,5,6,7,8
results:
- task:
type: text-generation
name: Causal Language Modeling
dataset:
name: pile-instruct/
type: pile-instruct/
split: None
metrics:
- type: accuracy
value: 0.20994595912408442
name: Accuracy
layer_4,5,6,7,8
This model is a fine-tuned version of P1ayer-1/pythia-deduped-1b-chat-base on the pile-instruct/ dataset. It achieves the following results on the evaluation set:
- Loss: 6.9437
- Accuracy: 0.2099
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
7.6017 | 0.02 | 200 | 7.5928 | 0.1605 |
7.1871 | 0.03 | 400 | 7.2690 | 0.1847 |
7.0356 | 0.05 | 600 | 7.0897 | 0.1980 |
6.93 | 0.07 | 800 | 6.9870 | 0.2064 |
6.9089 | 0.08 | 1000 | 6.9437 | 0.2099 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3
Wandb Report
https://wandb.ai/ontocord/pythia-1b-deduped-layer-test-min-pile-instruct/runs/6hvfd11h