|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- BAAI/IndustryInstruction_Automobiles |
|
base_model: |
|
- meta-llama/Meta-Llama-3.1-8B-Instruct |
|
--- |
|
|
|
This model is finetuned on the model llama3.1-8b-instruct using the dataset [BAAI/IndustryInstruction_Automobiles](https://huggingface.co/datasets/BAAI/IndustryInstruction_Automobiles) dataset, the dataset details can jump to the repo: [BAAI/IndustryInstruction](https://huggingface.co/datasets/BAAI/IndustryInstruction) |
|
|
|
## training params |
|
|
|
The training framework is llama-factory, template=llama3 |
|
|
|
``` |
|
learning_rate=1e-5 |
|
lr_scheduler_type=cosine |
|
max_length=2048 |
|
warmup_ratio=0.05 |
|
batch_size=64 |
|
epoch=10 |
|
``` |
|
|
|
select best ckpt by the evaluation loss |
|
## evaluation |
|
|
|
Duto to there is no evaluation benchmark, we can not eval the model |
|
|
|
## How to use |
|
|
|
```python |
|
# !/usr/bin/env python |
|
# -*- coding:utf-8 -*- |
|
# ================================================================== |
|
# [Author] : xiaofeng |
|
# [Descriptions] : |
|
# ================================================================== |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import transformers |
|
import torch |
|
|
|
|
|
llama3_jinja = """{% if messages[0]['role'] == 'system' %} |
|
{% set offset = 1 %} |
|
{% else %} |
|
{% set offset = 0 %} |
|
{% endif %} |
|
|
|
{{ bos_token }} |
|
{% for message in messages %} |
|
{% if (message['role'] == 'user') != (loop.index0 % 2 == offset) %} |
|
{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }} |
|
{% endif %} |
|
|
|
{{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] | trim + '<|eot_id|>' }} |
|
{% endfor %} |
|
|
|
{% if add_generation_prompt %} |
|
{{ '<|start_header_id|>' + 'assistant' + '<|end_header_id|>\n\n' }} |
|
{% endif %}""" |
|
|
|
|
|
dtype = torch.bfloat16 |
|
|
|
model_dir = "MonteXiaofeng/Automobile-llama3_1_8B_instruct" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_dir, |
|
device_map="cuda", |
|
torch_dtype=dtype, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_dir) |
|
tokenizer.chat_template = llama3_jinja # update template |
|
|
|
message = [ |
|
{"role": "system", "content": "You are a helpful assistant"}, |
|
{ |
|
"role": "user", |
|
"content": "随着特斯拉和小米汽车等新势力的崛起,传统车企如何应对互联网和科技公司的挑战,加速向智能化、电动化的方向转型?", |
|
}, |
|
] |
|
prompt = tokenizer.apply_chat_template( |
|
message, tokenize=False, add_generation_prompt=True |
|
) |
|
print(prompt) |
|
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") |
|
prompt_length = len(inputs[0]) |
|
print(f"prompt_length:{prompt_length}") |
|
|
|
generating_args = { |
|
"do_sample": True, |
|
"temperature": 1.0, |
|
"top_p": 0.5, |
|
"top_k": 15, |
|
"max_new_tokens": 512, |
|
} |
|
|
|
|
|
generate_output = model.generate(input_ids=inputs.to(model.device), **generating_args) |
|
|
|
response_ids = generate_output[:, prompt_length:] |
|
response = tokenizer.batch_decode( |
|
response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True |
|
)[0] |
|
|
|
|
|
|
|
print(f"response:{response}") |
|
""" |
|
传统车企应积极拥抱互联网和科技公司的挑战,加速向智能化、电动化的方向转型。首先,车企需要加强与科技公司的合作,利用其在人工智能、自动驾驶等领域的技术优势,提升自身产品的智能化水平。其次,车企应加大在电动化领域的投入,研发更多电动车型,满足市场对环保、节能的需求。同时,车企还应加强与电池供应商的合作,提升电动车的续航里程和充电速度,提高用户体验。此外,车企还应加强在智能互联方面的投入,提供更好的车联网服务,满足用户对智能化、便捷化的需求。总之,传统车企应积极应对互联网和科技公司的挑战,加速向智能化、电动化的方向转型,以适应市场的变化,保持竞争力 |
|
""" |
|
|
|
``` |