metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: resnet-50-finetuned-ISIC-dec2024new
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5
resnet-50-finetuned-ISIC-dec2024new
This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7290
- Accuracy: 0.5
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 0.7186 | 0.0 |
No log | 2.0 | 2 | 0.7177 | 0.0 |
No log | 3.0 | 3 | 0.7170 | 0.5 |
No log | 4.0 | 4 | 0.7229 | 0.5 |
No log | 5.0 | 5 | 0.7290 | 0.5 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.7.0.dev20250117+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0